• 제목/요약/키워드: Transverse Reinforcement

검색결과 419건 처리시간 0.024초

내력설계법에 의한 고강도 철근콘크리트 띠철근 기둥의 횡보강근량 산정 (Design of Transverse Steel Amounts of High Strength Reinforced Tied Columns by Axial Capacity Design Method)

  • 한범석;신성우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.151-156
    • /
    • 2003
  • On the basis of the philosophy that "the compressive axial load capacity after spalling of shell concrete should be maintained as that before spalling" by applying the confinement model of high strength concrete proposed in the previous proceeding paper and equivalent lateral confining pressure considering configurations of transverse reinforcement, the amounts of transverse reinforcement from the compressive capacity design method about high strength reinforced concrete tied columns can be calculated through the formula proposed in this paper. The proposed design equation of transverse steel amounts for high strength reinforced concrete tied columns was quite agreeable with the test results of HSC tied columns conducted by other researchers as well as author.as author.

  • PDF

지지부재를 설치한 띠형 강판보강재의 인발마찰 특성 평가 (Pull-Out Properties of Steel Strip Reinforcement with Transverse Steel Bar)

  • 이광우;조삼덕;주재우;박종범
    • 한국지반신소재학회논문집
    • /
    • 제6권3호
    • /
    • pp.31-37
    • /
    • 2007
  • 국외 수입에 의존하고 있는 띠형 강판 보강재를 대체할 수 있는 새로운 강(steel) 보강재로서, 강판과 지지부재를 결합한 새로운 형태의 보강재를 고안하였다. 개발 보강재는 폭${\times}$두께가 $65mm{\times}4.5mm$인 띠형 강판에 50cm 간격으로 11mm 직경의 천공구멍 및 돌기가 형성된 형태를 가지고 있으며, 인발저항력 증대를 위한 지지부재의 설치가 가능하다. 개발 보강재의 마찰특성 평가를 위한 전단마찰시험 및 인발시험 결과, 지지부재를 설치하면 보강재의 인발저항력이 크게 증가하는 것으로 나타났다.

  • PDF

The effect of fiber reinforcement on behavior of Concrete-Filled Steel Tube Section (CFST) under transverse impact: Experimentally and numerically

  • Yaman, Zeynep
    • Structural Engineering and Mechanics
    • /
    • 제82권2호
    • /
    • pp.173-189
    • /
    • 2022
  • This study presents an experimental and numerically study about the effects of fiber reinforcement ratio on the behavior of concrete-filled steel tubes (CFST) under dynamic impact loading. In literature have examined the behavior of GFRP and FRP wrapped strengthened CFST elements impact loads. However, since the direction of potential impact force isn't too exact, there is always the probability of not being matched the impact force of the area where the reinforced. Therefore, instead of the fiber textile wrapping method which strengthens only a particular area of CFST element, we used fiber-added concrete-filled elements which allow strengthening the whole element. Thus, the effect of fiber-addition in concrete on the behavior of CFST elements under impact loads was examined. To do so, six simply supported CFST beams were constructed with none fiber, 2% fiber and 10% fiber reinforcement ratio on the concrete part of the CFST beam. CFST beams were examined under two different impact loads (75 kg and 225 kg). The impactors hit the beam from a 2000 mm free fall during the experimental study. Numerical models of the specimens were created using ABAQUS finite element software and validated with experimental data. The obtained results such as; mid-span displacement, acceleration, failure modes and energies from experimental and numerical studies were compared and discussed. Furthermore, the Von Misses stress distribution of the CFST beams with different ratio of fiber reinforcements were investigated numerically. To sum up, there is an optimum amount limit of the fiber reinforcement on CFST beams. Up to this limit, the fiber reinforcement increases the structural performances of the beam, beyond that limit the fiber reinforcement decreases the performances of the CFST beam under transverse impact loadings.

Pullout Test of Retrofit Anchors using Deformed Reinforcement and Adhesive

  • Choi, Dong-Uk;Kim, Yon-Gon
    • KCI Concrete Journal
    • /
    • 제11권3호
    • /
    • pp.201-210
    • /
    • 1999
  • An experimental study was carried out to determine pullout behavior of a new type of anchor bolt that used deformed reinforcement and a commercial adhesive. Concrete slabs and columns with about 20-MPa compressive strength were used for 136 pullout tests performed. Test variables included anchor diameter (10 mm ~ 32 mm). embedment depth (10$\Phi$ or 15$\Phi$), edge effect. and Presence of transverse reinforcement in existing concrete. In Tyre-S test. where the edge or reinforcing steel effect was not included, the anchor Pullout strengths increased with increasing anchor diameters. Anchors with 15$\Phi$ embedment depth had higher Pullout strengths than those with 100 embedment depth The largest average Pullout load of 208 kN was determined for anchors made with D25 reinforcement and with 15$\Phi$ embedment depth. In Type-E tests, where the anchors were installed close to the edge of existing concrete, there were reductions in pullout strengths when compared to those determined in Type-S tests. In Type-ER tests, influence of the reinforcement in existing concrete on the anchor pullout strengths was examined using reinforced concrete and plain concrete columns Test results indicated that existing transverse reinforcement (column ties) did not help increase the pullout strength. The overall pullout test results revealed that the new anchor bolt can develop large pullout strengths while the anchors can be made of materials that are readily available in the market.

  • PDF

Experimental study on effect of EBRIG shear strengthening method on the behavior of RC beams

  • Shomali, Amir;Mostofinejad, Davood;Esfahani, Mohammad Reza
    • Advances in concrete construction
    • /
    • 제8권2호
    • /
    • pp.145-154
    • /
    • 2019
  • The present experimental study addresses the structural response of reinforced concrete (RC) beams strengthened in shear. Thirteen RC beams were divided into four different sets to investigate the effect of transverse and longitudinal steel reinforcement ratios, concrete compressive strength change and orientation for installing carbon fiber-reinforced polymer (CFRP) laminates. Then, we employed a shear strengthening solution through externally bonded reinforcement in grooves (EBRIG) and externally bonded reinforcement (EBR) techniques. In this regard, rectangular beams of $200{\times}300{\times}2000mm$ dimensions were subjected to the 4-point static loading condition and their load-displacement curves, load-carrying capacity and ductility changes were compared. The results revealed that using EBRIG method, the gain percentage augmented with the increase in the longitudinal reinforcement ratio. Also, in the RC beams with stirrups, the gain in shear strength decreased as transverse reinforcement ratio increased. The results also revealed that the shear resistance obtained by the experimental tests were in acceptable agreement with the design equations. Besides, the results of this research indicated that using the EBRIG system through vertical grooves in RC beams with and without stirrups caused the energy absorption to increase about 85% and 97%, respectively, relative to the control.

횡방향철근 상세에 따른 원형기둥의 내진성능 (Seismic Performance of Circular Columns considering Transverse Steel Details)

  • 이재훈
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.259-266
    • /
    • 2000
  • This study was conducted to investigate the seismic behavior assessment of circular reinforcement concrete bridge piers particularly with regard to assessing the displacement ductility curvature ductility response modification factor(R) and plastic hinge region etc, The experimental variables of bridge piers test consisted of transverse steel details amount and spacing different axial load levels etc. The test results indicated that reinforcement concrete bridge piers with confinement steel by the code specification exhibited suffcient ductile behavior and seismic performance. Also it is found that current seismic design code specification of confinement steel requirements may be revised.

  • PDF

콘크리트 압축강도와 띠철근의 체적비에 따른 R/C 단주의 내력평가 (Evaluation of R/C Short Columns Strength by Concrete Compressive Strength and Transverse Reinforcement Ratios)

  • 김경회;김재환;한범석;반병열;이광수;신성우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.505-508
    • /
    • 1999
  • To evaluate the strength of square reinforced concrete shot columns, thirty specimens were manufactured and tested under monotonically increasing concentric compression. The test parameters included the volumetric ratio of transverse reinforcement($\rho$h = 0.49~2.65), and concrete compressive strength (234, 437, 704 kgf/$\textrm{cm}^2$). Test results are shown that : (1) Behavior of high -strength concrete column is improved by providing increased volumetric ratio; and (2) ACI, Eq. is not proper to evaluate HSC short column strength.

  • PDF

트러스 모델을 이용한 순수비틀림을 받는 철근콘크리트 보의 비틀림 강도 예측 (Prediction on the Torsional Strength of Reinforced Concrete Beams Subjected to Pure Torsion by Truss Model)

  • 박지선;김상우;이정윤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.1103-1108
    • /
    • 2001
  • ACI 318-99 predicts the torsional moment of reinforced concrete members by assuming that the angle of diagonal compressive concrete is equal to 45 degree. However, this angle depends on the difference of longitudinal and transverse steel ratios. This paper compares the torsional moments calculated by ACI 318-99 code and a truss model considering compatibility of strains. The comparison indicated that the torsion equation in ACI code underestimated the real torsional moment of reinforced concrete beam in which the ratio of longitudinal reinforcement was larger than that of transverse reinforcement.

  • PDF

기존 철근콘크리트 교각의 내진성평가 (Seismic Evaluation of the Existing RC Piers)

  • 전귀현;이지훈
    • 한국지진공학회논문집
    • /
    • 제2권4호
    • /
    • pp.155-168
    • /
    • 1998
  • 본 연구에서는 국내기존 철근콘크리트(RC) 교각의 구조적 특성을 조사.분석하여 단면강도와 변형성능에 미치는 영향을 규명하였으며 이와같은 특성을 고려한 내진성평가절차를 제시하였다 기존 RC교각의 내진성평가를 위해서는 단면휨강도를 지배하는 구요소인 작용축력과 주철근비 및 주철근강도 주철근 항복후 부재변형성능과 전단강도를 지배하는 횡철근비 및 앵커상세 그리고 주철근 부착파괴를 결정하는 주철근의 이음부위치에 대한 상세조사가 요구된다. 국내기존 RC교각은 대부분 횡철근의 앵커가 부적절하고 주철근의 위치가 소성힌지부에 위치하고 있으므로 휨연성거동을 위한 변형성능이 충분히 확보되어있지 못하다 따라서 여기서 제시된 평가절차는 기존 연속교 고정단교각의 내진성평가를 수행하고 그에 따른 적절한 내진보강을 하여 지진에 대한 안전성확보 하는 데 도움이 될 것으로 판단된다.

  • PDF

경계요소 횡보강근의 상세와 배근간격에 따른 특수전단벽의 내진성능 (Seismic Performance of Special Shear Wall with the Different Hoop Reinforcement Detail and Spacing in the Boundary Element)

  • 천영수
    • 토지주택연구
    • /
    • 제6권1호
    • /
    • pp.11-19
    • /
    • 2015
  • 이 논문에서는 최근 강화된 내진규정에 의하여 현장에서 시공에 어려움을 겪고 있는 특수전단벽의 배근상세를 완화할 목적으로 제안된 경계요소 횡보강상세에 대하여 횡보강근의 형태와 배근간격에 따른 실험결과를 제시하고 있다. 실험결과, 제안된 횡보강 상세를 채용한 실험체의 균열 및 파괴양상은 폐쇄형 후프를 사용한 실험체와 유사한 경향을 나타내었으며, 최대강도도 예상값을 모두 상회하는 것으로 나타났다. 또한, 에너지 소산능력을 비교한 결과, 완화된 배근상세를 따르는 실험체(SSWR2)의 경우 기존 설계기준의 특수전단벽 실험체(SSW2)와 유사한 내진성능을 가지고 있는 것으로 나타났으며, 설계기준에서 제시하고 있는 1.5% 수준의 변형각 조건을 충분히 만족하고 있어 구조물의 주요 횡력저항 요소로서 사용될 수 있을 것으로 판단된다.