• Title/Summary/Keyword: Transportation efficiency

Search Result 1,346, Processing Time 0.03 seconds

Development of Radar-enabled AI Convergence Transportation Entities Detection System for Lv.4 Connected Autonomous Driving in Adverse Weather

  • Myoungho Oh;Mun-Yong Park;Kwang-Hyun Lim
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.190-201
    • /
    • 2023
  • Securing transportation safety infrastructure technology for Lv.4 connected autonomous driving is very important for the spread of autonomous vehicles, and the safe operation of level 4 autonomous vehicles in adverse weather has limitations due to the development of vehicle-only technology. We developed the radar-enabled AI convergence transportation entities detection system. This system is mounted on fixed and mobile supports on the road, and provides excellent autonomous driving situation recognition/determination results by converging transportation entities information collected from various monitoring sensors such as 60GHz radar and EO/IR based on artificial intelligence. By installing such a radar-enabled AI convergence transportation entities detection system on an autonomous road, it is possible to increase driving efficiency and ensure safety in adverse weather. To secure competitive technologies in the global market, the development of four key technologies such as ① AI-enabled transportation situation recognition/determination algorithm, ② 60GHz radar development technology, ③ multi-sensor data convergence technology, and ④ AI data framework technology is required.

An Analysis of Driving Pattern and Transportation Efficiency of Commercial Vehicle using On-board Truck scale (자중계 적용을 통한 화물차량 운행패턴 및 운송효율성 분석)

  • Kim, Jong Woo;Jung, Young Woo;Jho, Youn Beom
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.6
    • /
    • pp.76-95
    • /
    • 2019
  • An on-board truck scale is an essential technical solution for preventing overload, which makes the driver aware of the commercial vehicle weight. This study analyzed the effects of the driving pattern and transportation efficiency by the IoT Platform service for an on-board truck scale. A comparison of before and after installation using the long-term monitored data confirmed the reduction effects both of the overload ratio and overweight value, and their effects on increasing the transportation efficiency. In addition, the analysis result of the driving route showed that the installation of an on-board truck scale could be a more effective way of preventing overload than increasing the weighing checkpoints.

Toroidal-Shaped Coils for a Wireless Power Transfer System for an Unmanned Aerial Vehicle

  • Park, Jaehyoung;Kim, Jonghoon;Shin, Yujun;Park, Bumjin;Kim, Won-Seok;Cheong, Seok-Jong;Ahn, Seungyoung
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.1
    • /
    • pp.48-55
    • /
    • 2019
  • Unmanned aerial vehicles (UAVs) using communications, sensors, and navigation equipment will play a key role in future warfare. Currently, UAVs are monitored to prevent misfire and accidents, and the conventional method adopted uses wires for data transmission and power supply. The repeated connection and disconnection of cables increases maintenance time and harms the connector. For convenience and stability, a wireless power transfer system to power UAVs is needed. Unlike other wireless power transfer (WPT) applications, the size of the receiving coils must be small, so that the WPT systems can be embedded inside space-limited UAVs. The small size reduces the coupling coefficient and transfer efficiency between the transmitting and the receiving coils. In this study, we propose a toroidal-shaped coil for a WPT system for UAVs with high coupling coefficient with minimum space requirements. For validation, conventional coils and the proposed toroidal-shaped coil were used and their coupling coefficient and power transfer efficiency were compared using simulated and measured results. The simulated and measured results were strongly correlated, confirming that the proposed WPT system significantly improved efficiency with negligible change in the space requirement.

Improvement of Efficiency of Cu(Inx,Ga1-x)Se2 Thin Film Solar Cell by Enhanced Transparent Conductive Oxide Films (투명 전도막 개선을 통한 Cu(Inx,Ga1-x)Se2 박막태양전지 효율 향상에 관한 연구)

  • Kim, Kilim;Son, Kyeongtae;Kim, Minyoung;Shin, Junchul;Jo, Sunghee;Lim, Donggun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.4
    • /
    • pp.203-208
    • /
    • 2014
  • In this study, Sputtering method was used to grow Al-dopes ZnO films on a CIGS absorber layer, in order to examine the effect of TCO on properties of CIGS solar cell devices. Structural, electrical and optical properties were investigated by varied thickness of Al-dopes ZnO films. Also, relation to the application as a window layer in CIGS thin film solar cell were studied. It was found that the electrical and structural properties of ZnO:Al film improved with increasing its thickness. However, the optical properties degraded. Jsc of the fabricated CIGS based solar cells was significantly influenced by the variation of the ZnO:Al window layer thickness. Because ZnO:Al window layer is one of the Rs factors in CIGS solar cell. Rs has the biggest influence on efficiency characteristic. In order to obtain high efficiency of CIGS solar cell, ZnO:Al window layer should be fabricated with electrically and optically optimized.

Welcome the Challenges and Imaging the Sky Town

  • Cheng, Jiang Huan
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.3
    • /
    • pp.271-277
    • /
    • 2017
  • Safety, livability, and efficiency are the three prominent problems of tall buildings, which are also the severe challenges to designers. We proposed the idea of building the sky town to solve these problems, which can be summarized in two sentences, one is tall building multi-storised, and another one is vertical facilities municipal-infrastructurised. The tall building can be horizontally cut into several multi-storey buildings by some large platforms. The platform extends a certain width to block the fire from spreading. Tall buildings are connected together as a group. One of them is a traffic core, which is used for vertical transportation and MEP. It connects to traffic center such as metro, while most of the other tall buildings' cores can be very much released, so as to achieve maximum efficiency of floor usable area and to give good traffic organization. By combining traffic core, platforms, and multi-storey buildings' inner traffic, a transportation network is formed. Finally, we refer to the design of Raffles City Chongqing to make a sketch of sky town.

Evaluation of a Fungal Spore Transportation in a Building under Uncertainty

  • Moon, Hyeun Jun
    • Architectural research
    • /
    • v.8 no.1
    • /
    • pp.37-45
    • /
    • 2006
  • A fungal spore transportation model that accounts for the concentration of airborne indoor spores and the amount of spores deposited on interior surfaces has been developed by extending the current aerosol model. This model is intended to be used for a building with a mechanical ventilation system, and considers HVAC filter efficiency and ventilation rate. The model also includes a surface-cleaning efficiency and frequency that removes a portion of spores deposited on surfaces. The developed model predicts indoor fungal spore concentration and provides an indoor/outdoor ratio that may increase or decrease mold growth risks in real, in-use building cases. To get a more useful outcome from the model simulation, an uncertainty analysis has been conducted in a real building case. By including uncertainties associated with the parameters in the spore transportation model, the simulation results provide probable ranges of indoor concentration and indoor/outdoor ratio. This paper describes the uncertainty quantification of each parameter that is specific to fungal spores, and uncertainty propagation using an appropriate statistical technique. The outcome of the uncertainty analysis showed an agreement with the results from the field measurement with air sampling in a real building.

The Plan to Increase Efficiency of Exhaust Gas Recirculation System (배기가스 재순환장치 효율 증대 방안)

  • Kim, Kwang Soo;Chung, Soon Suk;Heo, Yun Bok
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.3
    • /
    • pp.185-194
    • /
    • 2014
  • Internal engine is the main power source of vehicle and is the main source of air pollution. To satisfy this getting rigorous emission regulation, it must be solved simultaneously the dilemma of reducing emission gas and increasing heat efficiency. Diesel engine is preferred compare with gasoline engine in aspect of energy consumption but it must be solved reducing the containing of NOx, CO and HC. In this study: 1. Looking for alternative of performance improvement of Exhaust Gas Recirculation(EGR) which is emission gas reduction system. 2. Reducing malfunction of controlling emission gas. 3. Made possible precision control.

Analysis of the energy recycling efficiency for railway operation (그린 철도운행을 위한 에너지 재활용 효율 분석)

  • Kim, Dong-Hui;Lee, Cheol-Gyu
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2012.04a
    • /
    • pp.159-166
    • /
    • 2012
  • Recently, by the whole world paradigm shift to "Low Carbon Green Growth", it is required to renovate National Transportation and Logistics System. Transportation accounts for 21% of the total energy consumption and 20% of the total $CO_2$ emission, and also places its main reliance on fossil fuels. From green point of view, electric railway system is superior to the other transportation alternatives, but also required to develop the innovative technologies for high efficiency and low energy consumption. In this paper, the concept of railway green operation system by regenerative synchronized driving is presented, including the numerical example and the estimated effect.

  • PDF

Renovation plans of operation field of Seoul Metro Line 9 (서울 도시철도 9호선의 운영분야 혁신방안)

  • Han, Woo-Jin;Park, Jeong-Soo
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1441-1446
    • /
    • 2008
  • Seoul Metro Line 9 (SML9) is the first subway line that private capital invests in Korea. SML9 will cross Seoul, linking the Gimpo Airport to the Gangnam district (25.5km) opening in the first half of 2009. SML9 has a new model in Korea constructed by metropolitan government and private company and operated by specialized public transportation service provider. SML9 is confronted with tough environment of stagnated public transportation and strong competitor, Olympic city expressway. And SML9 is under pressure for showing high efficiency as non-governmental organization from both customers and government. Consequently SML9 must lead the maximum efficiency by using its material and human resource. It is necessary that SML9 raise a competitive power and display its ability in active collaboration with relative organization and company. Hereupon, I propose renovation plans from viewpoint of operation field of SML9, (1) efficient train scheduling regime focusing on the combination of express and local train (2) close connection of other mean of transportation and (3) effective connection convention with Airport Railroad (AREX) as the line connected directly.

  • PDF

On the development of Intelligent Railway Logistics Terminal (수송력 향상을 위한 지능형 철도물류터미널 구축방안)

  • Kim, Dong-Hee
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.4
    • /
    • pp.175-181
    • /
    • 2010
  • The government have plans to improve the railway transport capacity and transport hub for the sustainable national transport and logistics system. Specially, there are much efforts to improve transportation capacity such as high speed transportation of rail freight, enlargement of BT train, development of double stack train, etc. between railway transport hubs. If the transport capacity between railway logistics hubs is increased as planned, we must increase the handling capacity of railway hub terminals. But there are limits to enlarge the terminal infrastructure because of investment scale, location circumstances and urban development plans. To ensure the capacity, with the minimum required enlargement of infrastructure, it is necessary to extremely increase the efficiency of terminal operations. For improving the efficiency, we have to introduce the efficient terminal operation systems based on u-IT and operation optimize technologies. In this paper, we analyse the issues and problems of railway terminals(including ICD) and suggest the concept of intelligent railway terminal and the construction components of technology.