• 제목/요약/키워드: Transport Layer

검색결과 1,236건 처리시간 0.034초

Bi-2223 선재를 이용한 Prototype 고온 초전도 케이블의 전기적 특성 (An Electrical Properties of Prototype HTS Cable using Bi-2223 tape)

  • 김영석;이병성;장현만;곽민환;김상현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.1551-1553
    • /
    • 2000
  • Superconducting power cable is one of the most promising energy application of high-$T_c$ superconductors (HTS). A prototype HTS cable have been constructed multi-layer cable using Bi-2223 tape and tested. The result shows that the total transport current of HTS cable in $LN_2$ was 475[A], and transport current passed through almost the outer layer (2-layer). Also, AC transport losses in outer layer of HTS cable was proportion to $I^2$ and higher than losses of inner layer. As magnetic distribution were concentrated on outer layer.

  • PDF

WAP환경에서 안전한 종단간 보안을 제공하는 TLS(Transport Layer Security)-Plus 프로토콜 (An End to End Security in the WAP environment : TLS(Transport Layer Security)-Plus Protocol)

  • 최진규;이헌길
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (A)
    • /
    • pp.811-813
    • /
    • 2002
  • WAP은 WAP Forum에서 제정한 무선 환경에서의 데이터 통신을 위한 표준 프로토콜이다. WAP에서는 보안 통신을 위한 프로토콜로서 WTLS(Wireless Transport Layer Security)를 제안하고 있다. 이것은 TCP/IP 상의 TLS(Transport Layer Security)를 바탕으로 무선 환경에 맞게 최적화한 것이다. 그러나, WAP은 기본적으로 게이트웨이 모델에 따른 프로토콜이라는 점과 무선 구간에서의 전송 효율을 높이기 위한 인코딩 기능 때문에 게이트웨이에서 클라이언트와 서버 사이에 교환되는 정보가 노출되는 이른바 종단간의 보안 (End-to-End Security)문제가 존재한다. 이러한 이유로 유선에서와는 달리 안전한 종단간 보안을 제공하지 못하고 있다. 이에 본 논문에서는 기존 TLS와 WTLS를 합친 새로운 TLS(Transport Layer Security)-Plus 프로토콜을 제안하여 무선 환경에서 무선 단말기에 부담을 주지 않는 안전한 종단간 보안을 제공하려고 한다.

  • PDF

New ETL 층에 의한 저전압 구동 백색 발광 OLED (Low Voltage Driving White OLED with New Electron Transport Layer)

  • 문대규
    • 한국전기전자재료학회논문지
    • /
    • 제22권3호
    • /
    • pp.252-256
    • /
    • 2009
  • We have developed low driving voltage white organic light emitting diode with a new electron transport material, triphenylphosphine oxide ($Ph_{3}PO$). The white light emission was realized with a rubrene yellow dopant and blue-emitting DPVBi layer. The new electron transport layer results in a very high current density at low voltage, resulting in a reduction of driving voltage. The device with a new electron transport layer shows a brightness of $1150\;cd/m^2$ at a low driving voltage of 4.3 V.

구리 이온 도핑된 카드뮴 셀레나이드 양자점 전자수송층을 갖는 나노와이어 광전변환소자의 효율 평가 (Enhancing the Efficiency of Core/Shell Nanowire with Cu-Doped CdSe Quantum Dots Arrays as Electron Transport Layer)

  • 이종환;황성원
    • 반도체디스플레이기술학회지
    • /
    • 제19권4호
    • /
    • pp.94-98
    • /
    • 2020
  • The core/shell of nanowires (NWs) with Cu-doped CdSe quantum dots were fabricated as an electron transport layer (ETL) for perovskite solar cells, based on ZnO/TiO2 arrays. We presented CdSe with Cu2+ dopants that were synthesized by a colloidal process. An improvement of the recombination barrier, due to shell supplementation with Cu-doped CdSe quantum dots. The enhanced cell steady state was attributable to TiO2 with Cu-doped CdSe QD supplementation. The mechanism of the recombination and electron transport in the perovskite solar cells becoming the basis of ZnO/TiO2 arrays was investigated to represent the merit of core/shell as an electron transport layer in effective devices.

역압력 구배 난류 경계층에서 레이놀즈 응력의 스케일 간 수송 (Interscale transport of the Reynolds stress in a turbulent boundary layer subjected to adverse pressure gradient)

  • 윤민
    • 한국가시화정보학회지
    • /
    • 제20권1호
    • /
    • pp.38-44
    • /
    • 2022
  • An interscale transport of the turbulent kinetic energy (TKE) and Reynolds shear stress (RSS) is examined in an adverse pressure gradient (APG) turbulent boundary layer (TBL). The direct numerical simulation data of an APG TBL at Reτ = 834 and β = 1.45 is employed. The TKE and RSS transport equations are divided into large and small scales, leading to the introduction of interscale transport. The TKE mainly transfers from large scales to small ones in the outer region, and vice versa for the RSS. An interscale transport of TKE and inverse interscale transport of RSS are amplified by APG, and the latter results in the increase in large scales of TKE production. Some of outer large scales of enhanced TKE transfer to small scales and then dissipate by viscosity, and the remains dissipate turbulent-non-turbulent interfaces by turbulent transport.

정공수송층이 역구조 OLED의 전기 및 광학적 특성에 미치는 영향 (Effect of Hole Transport Layer on the Electrical and Optical Characteristics of Inverted Organic Light-Emitting Diodes)

  • 임세진;문대규
    • 한국전기전자재료학회논문지
    • /
    • 제36권4호
    • /
    • pp.397-402
    • /
    • 2023
  • We have developed inverted green phosphorescent organic light emitting diodes (OLEDs) using 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) and bis(carbazole-9-yl)biphenyl (CBP) hole transport layers. The driving voltage, current efficiency, power efficiency, and emission characteristics of devices were investigated. While the driving voltage for the same current density was about 1~2 V lower in the devices with the TAPC layer, the maximum luminance was higher in the device with the CBP layer. The maximum current efficiency and power efficiency were 3.2 and 2.7 times higher in the device with the CBP layer, respectively. The higher efficiency in the CBP device resulted from the enhanced hole-electron balance although weak parasitic recombination takes place in the CBP hole transport layer.

싸이오펜 기반 청색 인광용 정공수송층 개발 (Development of Blue Fluorescent Light Hole Transport Layer of Thiophene Base)

  • 기현철;신현오;황은혜;권태혁
    • 한국전기전자재료학회논문지
    • /
    • 제30권2호
    • /
    • pp.91-95
    • /
    • 2017
  • We were designed the hole transport layer of the new composite skeleton structure having a high charge mobility and thermal stability. In this paper, a hole transport layer material based on thiophene molecular structure capable of hole mobility characteristics and high triplet energy was designed and synthesized. The structures and properties of the synthesized compounds were characterized by NMR, fluorescence spectroscopy and energy band gap. As a result of NMR measurement, it was confirmed that when analyzing the integrated type with the position where the measured peak is displayed, it agrees with the structure of hole transport materials. The emission characteristics of the hole transport layer material showed absorption characteristics at 412 nm and 426 nm, respectively, and exhibited emission characteristics in the range of 469 nm and 516 nm.

유기 발광 다이오드 내부의 라디칼 반응 가능성 검사 (Feasibility Test for Radical reactions in Organic Light Emitting Diode)

  • 한철희
    • 제어로봇시스템학회논문지
    • /
    • 제14권4호
    • /
    • pp.365-368
    • /
    • 2008
  • Feasibility test for radical reactions in organic light emitting diode(OLED) has been applied on OLED consisting of hole transport layer(HTL) and electron transport layer(ETL). Organic molecules such as 4,4',-Bis[N-(1-naphthyl)-N-phenylamino] biphenyl(NPD) and 4,4',4"-tris(3-methylphenylphenylamino)triphenylamine(m-MTDATA) are chosen for hole transport layer(HTL) and Bathocuproine(BCP) for electron transport layer(ETL) in this study. Informations on energy and shape of frontier orbitals and data on radical reactions of simple aromatics from semiconductor($TiO_2$) photocatalysis have provided basis for determining feasibility for radical reactions in OLED. The outcome of our feasibility test would be useful in designing optimum molecule for organic layer with a view to extending the lifetime of OLED.

Enhancement mechanisms of luminance efficiency in red organic light-emitting devices fabricated utilizing a double electron transport layer consisting of an Al-doped layer and an undoped layer

  • Choo, D.C.;Bang, H.S.;Ahn, S.D.;Lee, K.S.;Seo, S.Y.;Yang, J.S.;Kim, T.W.;Seo, J.H.;Kim, Y.K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.513-516
    • /
    • 2008
  • The luminance efficiency of the red organic light-emitting devices fabricated utilizing a double electron transport layer (ETL) consisting of an Al-doped and an undoped layer was investigated. The Al atoms existing in the ETL acted as hole blocking sites, resulting in an increase in the luminance efficiency.

  • PDF

지능형 교통체제에서 차량 단말장치의 DSRC 통신기술 설계 (The Design for DSRC Communication Technology of On Board Equipment in the Intelligent Transport System)

  • 이대식
    • 디지털산업정보학회논문지
    • /
    • 제8권4호
    • /
    • pp.135-142
    • /
    • 2012
  • DSRC system is a communication system that consists of road side equipment and on board equipment to provide services of communication technology for intelligent transportation systems. In this paper, we carry out a short-range dedicated high-speed wireless communications via DSRC system based on board equipment that is installed in the vehicle and road side equipment through wireless channels of communication. on board equipment is system that have a memory which initialization information is stored, it loads physical layer and MAC layer, LLC layer, L7 layer in turn. In the upper, it should analyze the various commands that are sent from roadside base stations, and carry out the operation which is in accordance with the command. and also it designs the structure of protocol stack which is TRM Layer loaded that is to initialize on L7 layer and MAC layer and efficiently designs operation between on board equipment and the road side equipment.