Enhancing the Efficiency of Core/Shell Nanowire with Cu-Doped CdSe Quantum Dots Arrays as Electron Transport Layer

구리 이온 도핑된 카드뮴 셀레나이드 양자점 전자수송층을 갖는 나노와이어 광전변환소자의 효율 평가

  • Lee, Jonghwan (Department of System Semiconductor Engineering, Sangmyung University) ;
  • Hwang, Sung Won (Department of System Semiconductor Engineering, Sangmyung University)
  • 이종환 (상명대학교 시스템반도체공학과) ;
  • 황성원 (상명대학교 시스템반도체공학과)
  • Received : 2020.12.08
  • Accepted : 2020.12.12
  • Published : 2020.12.31

Abstract

The core/shell of nanowires (NWs) with Cu-doped CdSe quantum dots were fabricated as an electron transport layer (ETL) for perovskite solar cells, based on ZnO/TiO2 arrays. We presented CdSe with Cu2+ dopants that were synthesized by a colloidal process. An improvement of the recombination barrier, due to shell supplementation with Cu-doped CdSe quantum dots. The enhanced cell steady state was attributable to TiO2 with Cu-doped CdSe QD supplementation. The mechanism of the recombination and electron transport in the perovskite solar cells becoming the basis of ZnO/TiO2 arrays was investigated to represent the merit of core/shell as an electron transport layer in effective devices.

Keywords

References

  1. Niu, Z. Y.,Kweon, H. Kyu.,Park, C. Yong.,"Improving the Performances of Dye-Sensitized Solar Cell by the Optimal TiO2 Photoelectrode Thickness and Light-Scattering Enhancement."., J. Semi. & Disp. Tech., v.13, pp.37-44, 2014.
  2. Kim, S.,Jung, Y. S.,Kim, K. H., "Effect of Pos-tannealing Treatment on Copper Oxide based Heterojunction Solar Cells", J. Semi. & Disp. Tech., v.19, pp.55-59, 2020.
  3. Choi, J.,Roh, S.,Seo, Hwa-Il., "A Study on Application of Ag Nano-Dots and Silicon Nitride Film for Improving the Light Trapping in Mono-crystalline Silicon Solar Cell", J. Semi. & Disp. Tech., v.18, pp.12-17, 2019.
  4. Lewis, N.S., "Toward cost-effective solar energy use," Science, Vol. 315, pp. 798-801, 2007. https://doi.org/10.1126/science.1137014
  5. Chebrolu, V.T., Kim, H.J., "Recent progress in quantum dot sensitized solar cells: An inclusive review of photoanode, sensitizer, electrolyte, and the counter electrode," J. Mater. Chem. C., Vol. 7, pp. 4911-4933. 2019. https://doi.org/10.1039/C8TC06476H
  6. Liu, L.,Wang, H.,Wang, D., Li, Y., He, X., Zhang, H., Shen, J., "ZnO@TiO2 Core/Shell Nanowire Arrays with Different Thickness of TiO2 Shell for Dye-Sensitized Solar Cells," Crystals, Vol. 10, pp. 325, 2020. https://doi.org/10.3390/cryst10040325
  7. Liu, L., Ou, H., Hong, K.,Wang, L., "Evidence of a strong electron-hole separation effect in ZnO@TiO2 core/shell nanowires," J. Alloy. Compd., Vol. 749, pp. 217-220, 2018. https://doi.org/10.1016/j.jallcom.2018.03.184
  8. Segets, D., Lucas, J.M., Klupp Taylor, R.N., Scheele, M., Zheng, H., Alivisatos, A.P., Peukert, W., "Determination of the quantum dot band gap dependence on particle size from optical absorbance and transmission electron microscopy measurements," ACS Nano, Vol. 6, pp. 9021-9032, 2012. https://doi.org/10.1021/nn303130d
  9. Yu, W.W., Qu, L., Guo, W., Peng, X., "Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals," Chem. Mater., Vol. 15, pp. 2854-2860, 2003. https://doi.org/10.1021/cm034081k
  10. Vogel, R., Hoyer, P., Weller, H., "Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors," J. Phys. Chem., Vol. 98, pp. 3183-3188, 1994. https://doi.org/10.1021/j100063a022
  11. Luther, J.M., Beard, M.C., Song, Q., Law, M., Ellingson, R.J., Nozik, A.J., "Multiple exciton generation in films of electronically coupled PbSe quantum dots," Nano Lett., Vol. 7, pp. 1779-1784, 2007. https://doi.org/10.1021/nl0708617
  12. Yang, Z., Chen, C.Y., Roy, P., Chang, H.T., "Quantum dot-sensitized solar cells incorporating nanomaterials," Chem. Commun., Vol. 47, pp. 9561-9571, 2011. https://doi.org/10.1039/c1cc11317h
  13. Li, Y., Lu, W., Huang, Q., Li, C., Chen, W., "Copper sulfide nanoparticles for photothermal ablation of tumor cells," Nanomedicine, Vol. 5, pp. 1161-1171, 2010. https://doi.org/10.2217/nnm.10.85
  14. Li, B., Xie, Y., Xue, Y., "Controllable synthesis of CuS nanostructures from self-assembled precursors with biomolecule assistance," J. Phys. Chem. C, Vol. 111, pp. 12181-12187, 2007. https://doi.org/10.1021/jp070861v
  15. Luther, J.M., Jain, P.K., Ewers, T., Alivisatos, A.P. "Localized surface plasmon resonances arising from free carriers in doped quantum dots," Nat. Mater., Vol. 10, pp. 361, 2011. https://doi.org/10.1038/nmat3004
  16. Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., Seok, S.I., "Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells," Nat. Mater. Vol. 13, pp. 897-903, 2014. https://doi.org/10.1038/nmat4014
  17. Berry, J., Buonassisi, T., Egger, D.A., Hodes, G., Kronik, L., Loo, Y.-L., Lubomirsky, I., Marder, S.R., Mastai, Y., Miller, J.S., "Hybrid Organic-Inorganic Perovskites (HOIPs): Opportunities and Challenges," Adv. Mater., Vol. 27, pp. 5102-5112, 2015. https://doi.org/10.1002/adma.201502294
  18. Gao, P., Gratzel, M., Nazeeruddin, M.K. "Organohalide lead perovskites for photovoltaic applications," Energy Environ. Sci., Vol. 7, pp. 2448-2463, 2014. https://doi.org/10.1039/C4EE00942H
  19. Colella, S., Mosconi, E., Fedeli, P., Listorti, A., Gazza, F., Orlandi, F., Ferro, P., Besagni, T., Rizzo, A., Calestani, G., "MAPbI3-xClxMixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties," Chem. Mater., Vol. 25, pp. 4613-4618, 2013. https://doi.org/10.1021/cm402919x