Browse > Article

Enhancing the Efficiency of Core/Shell Nanowire with Cu-Doped CdSe Quantum Dots Arrays as Electron Transport Layer  

Lee, Jonghwan (Department of System Semiconductor Engineering, Sangmyung University)
Hwang, Sung Won (Department of System Semiconductor Engineering, Sangmyung University)
Publication Information
Journal of the Semiconductor & Display Technology / v.19, no.4, 2020 , pp. 94-98 More about this Journal
Abstract
The core/shell of nanowires (NWs) with Cu-doped CdSe quantum dots were fabricated as an electron transport layer (ETL) for perovskite solar cells, based on ZnO/TiO2 arrays. We presented CdSe with Cu2+ dopants that were synthesized by a colloidal process. An improvement of the recombination barrier, due to shell supplementation with Cu-doped CdSe quantum dots. The enhanced cell steady state was attributable to TiO2 with Cu-doped CdSe QD supplementation. The mechanism of the recombination and electron transport in the perovskite solar cells becoming the basis of ZnO/TiO2 arrays was investigated to represent the merit of core/shell as an electron transport layer in effective devices.
Keywords
Nanowire; CdSe Quantum Dots; Electron Transport Layer; Perovskite; Carrier Transport;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Choi, J.,Roh, S.,Seo, Hwa-Il., "A Study on Application of Ag Nano-Dots and Silicon Nitride Film for Improving the Light Trapping in Mono-crystalline Silicon Solar Cell", J. Semi. & Disp. Tech., v.18, pp.12-17, 2019.
2 Lewis, N.S., "Toward cost-effective solar energy use," Science, Vol. 315, pp. 798-801, 2007.   DOI
3 Chebrolu, V.T., Kim, H.J., "Recent progress in quantum dot sensitized solar cells: An inclusive review of photoanode, sensitizer, electrolyte, and the counter electrode," J. Mater. Chem. C., Vol. 7, pp. 4911-4933. 2019.   DOI
4 Liu, L.,Wang, H.,Wang, D., Li, Y., He, X., Zhang, H., Shen, J., "ZnO@TiO2 Core/Shell Nanowire Arrays with Different Thickness of TiO2 Shell for Dye-Sensitized Solar Cells," Crystals, Vol. 10, pp. 325, 2020.   DOI
5 Liu, L., Ou, H., Hong, K.,Wang, L., "Evidence of a strong electron-hole separation effect in ZnO@TiO2 core/shell nanowires," J. Alloy. Compd., Vol. 749, pp. 217-220, 2018.   DOI
6 Segets, D., Lucas, J.M., Klupp Taylor, R.N., Scheele, M., Zheng, H., Alivisatos, A.P., Peukert, W., "Determination of the quantum dot band gap dependence on particle size from optical absorbance and transmission electron microscopy measurements," ACS Nano, Vol. 6, pp. 9021-9032, 2012.   DOI
7 Yu, W.W., Qu, L., Guo, W., Peng, X., "Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals," Chem. Mater., Vol. 15, pp. 2854-2860, 2003.   DOI
8 Vogel, R., Hoyer, P., Weller, H., "Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors," J. Phys. Chem., Vol. 98, pp. 3183-3188, 1994.   DOI
9 Luther, J.M., Beard, M.C., Song, Q., Law, M., Ellingson, R.J., Nozik, A.J., "Multiple exciton generation in films of electronically coupled PbSe quantum dots," Nano Lett., Vol. 7, pp. 1779-1784, 2007.   DOI
10 Yang, Z., Chen, C.Y., Roy, P., Chang, H.T., "Quantum dot-sensitized solar cells incorporating nanomaterials," Chem. Commun., Vol. 47, pp. 9561-9571, 2011.   DOI
11 Li, Y., Lu, W., Huang, Q., Li, C., Chen, W., "Copper sulfide nanoparticles for photothermal ablation of tumor cells," Nanomedicine, Vol. 5, pp. 1161-1171, 2010.   DOI
12 Niu, Z. Y.,Kweon, H. Kyu.,Park, C. Yong.,"Improving the Performances of Dye-Sensitized Solar Cell by the Optimal TiO2 Photoelectrode Thickness and Light-Scattering Enhancement."., J. Semi. & Disp. Tech., v.13, pp.37-44, 2014.
13 Kim, S.,Jung, Y. S.,Kim, K. H., "Effect of Pos-tannealing Treatment on Copper Oxide based Heterojunction Solar Cells", J. Semi. & Disp. Tech., v.19, pp.55-59, 2020.
14 Li, B., Xie, Y., Xue, Y., "Controllable synthesis of CuS nanostructures from self-assembled precursors with biomolecule assistance," J. Phys. Chem. C, Vol. 111, pp. 12181-12187, 2007.   DOI
15 Luther, J.M., Jain, P.K., Ewers, T., Alivisatos, A.P. "Localized surface plasmon resonances arising from free carriers in doped quantum dots," Nat. Mater., Vol. 10, pp. 361, 2011.   DOI
16 Colella, S., Mosconi, E., Fedeli, P., Listorti, A., Gazza, F., Orlandi, F., Ferro, P., Besagni, T., Rizzo, A., Calestani, G., "MAPbI3-xClxMixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties," Chem. Mater., Vol. 25, pp. 4613-4618, 2013.   DOI
17 Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., Seok, S.I., "Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells," Nat. Mater. Vol. 13, pp. 897-903, 2014.   DOI
18 Berry, J., Buonassisi, T., Egger, D.A., Hodes, G., Kronik, L., Loo, Y.-L., Lubomirsky, I., Marder, S.R., Mastai, Y., Miller, J.S., "Hybrid Organic-Inorganic Perovskites (HOIPs): Opportunities and Challenges," Adv. Mater., Vol. 27, pp. 5102-5112, 2015.   DOI
19 Gao, P., Gratzel, M., Nazeeruddin, M.K. "Organohalide lead perovskites for photovoltaic applications," Energy Environ. Sci., Vol. 7, pp. 2448-2463, 2014.   DOI