DOI QR코드

DOI QR Code

Effect of Hole Transport Layer on the Electrical and Optical Characteristics of Inverted Organic Light-Emitting Diodes

정공수송층이 역구조 OLED의 전기 및 광학적 특성에 미치는 영향

  • Se-Jin Im (Department of Display Materials Engineering, Soonchunhyang University) ;
  • Dae-Gyu Moon (Department of Display Materials Engineering, Soonchunhyang University)
  • 임세진 (순천향대학교 디스플레이신소재공학과) ;
  • 문대규 (순천향대학교 디스플레이신소재공학과)
  • Received : 2023.04.28
  • Accepted : 2023.05.18
  • Published : 2023.07.01

Abstract

We have developed inverted green phosphorescent organic light emitting diodes (OLEDs) using 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) and bis(carbazole-9-yl)biphenyl (CBP) hole transport layers. The driving voltage, current efficiency, power efficiency, and emission characteristics of devices were investigated. While the driving voltage for the same current density was about 1~2 V lower in the devices with the TAPC layer, the maximum luminance was higher in the device with the CBP layer. The maximum current efficiency and power efficiency were 3.2 and 2.7 times higher in the device with the CBP layer, respectively. The higher efficiency in the CBP device resulted from the enhanced hole-electron balance although weak parasitic recombination takes place in the CBP hole transport layer.

Keywords

Acknowledgement

본 연구는 순천향대학교의 학술연구비 지원과 교육부-연구재단의 지자체대학협력기반 지역혁신사업으로 수행된 연구 결과임.

References

  1. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987). [DOI: https://doi.org/10.1063/1.98799]
  2. G. Hong, X. Gan, C. Leonhardt, Z. Zhang, J. Seibert, J. M. Busch, and S. Brase, Adv. Mater., 33, 2005630 (2021). [DOI: https://doi.org/10.1002/adma.202005630]
  3. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature, 395, 151 (1998). [DOI: https://doi.org/10.1038/25954]
  4. J. M. Teng, Y. F. Wang, and C. F. Chen, J. Mater. Chem. C, 8, 11340 (2020). [DOI: https://doi.org/10.1039/d0tc02682d]
  5. M. Lu, P. de Bruyn, H. T. Nicolai, G.J.A.H. Wetzelaer, and P.W.M. Blom, Org. Electron., 13, 1693 (2012). [DOI: https://doi.org/10.1016/j.orgel.2012.05.032]
  6. L. Ding, J. N. Wang, T. Ni, Q. Xue, S. Hu, R. Wu, D. Luo, H. Zheng, Y. Liu, and B. Liu, J. Mater. Chem. C, 11, 2672 (2023). [DOI: https://doi.org/10.1039/d2tc04282g]
  7. H. Lee, I. Park, J. Kwak, D. Y. Yoon, and C. Lee, Appl. Phys. Lett., 96, 153306 (2010). [DOI: https://doi.org/10.1063/1.3400224]
  8. H. Lee, C. M. Kang, M. Park, J. Kwak, and C. Lee, ACS Appl. Mater. Interfaces, 5, 1977 (2013). [DOI: https://doi.org/10.1021/am302787y]
  9. C. H. Chang, M. K. Hsu, S. W. Wu, M. H. Chen, H. H. Lin, C. S. Li, T. W. Pi, H. H. Chang, and N. P. Chen, Phys. Chem. Chem. Phys., 17, 13123 (2015). [DOI: https://doi.org/10.1039/c5cp01692d]
  10. X. Wang, C. Shi, Q. Guo, Z. Wu, D. Yang, X. Qiao, T. Ahamad, S. M. Alshehri, J. Chen, and D. Ma, J. Mater. Chem. C, 4, 8731 (2016). [DOI: https://doi.org/10.1039/c6tc02842j]
  11. H. I. Yang, S. H. Jeong, S. M. Cho, R. Lampande, K. M. Lee, J. A. Hong, J. W. Choi, B. S. Kim, Y. Park, R. Pode, and J. H. Kwon, Org. Electron., 89, 106031 (2021). [DOI: https://doi.org/10.1016/j.orgel.2020.106031]
  12. S. Hofle, A. Schienle, M. Bruns, U. Lemmer, and A. Colsmann, Adv. Mater., 26, 2750 (2014). [DOI: https://doi.org/10.1002/adma.201304666]
  13. Y. J. Pu, N. Morishita, T. Chiba, S. Ohisa, M. Igarashi, A. Masuhara, and J. Kido, ACS Appl. Mater. Interfaces, 7, 25373 (2015). [DOI: https://doi.org/10.1021/acsami.5b07742]
  14. Y. Murat, E. Langer, J. P. Barnes, J. Y. Laurent, G. Wantz, L. Hirsch, and T. Maindron, Org. Electron., 48, 377 (2017). [DOI: https://doi.org/10.1016/j.orgel.2017.04.023]
  15. H. A. Hwang, H. J. Park, and D. G. Moon, Synth. Met., 287, 117078 (2022). [DOI: https://doi.org/10.1016/J.synthmet.2022.117078]
  16. T. Matsuhima, Y. Kinoshita, and H. Murata, Appl. Phys. Lett., 91, 253504 (2007). [DOI: https://doi.org/10.1063/1.2825275]
  17. T. Matsushima, G. H. Jin, and H. Murata, J. Appl. Phys., 104, 054501 (2008). [DOI: https://doi.org/10.1063/1.2974089]
  18. J. W. Kang, S. H. Lee, H. D. Park, W. I. Jeong, K. M. Yoo, Y. S. Park, and J. J. Kim, Appl. Phys. Lett., 90, 223508 (2007). [DOI: https://doi.org/10.1063/1.2745224]
  19. C. W. Lee and J. Y. Lee, Org. Electron., 15, 399 (2014). [DOI: https://doi.org/10.1016/j.orgel.2013.11.037]
  20. Y. Y. Noh, C. L. Lee, J. J. Kim, and K. Yase, J. Chem. Phys., 118, 2853 (2003). [DOI: https://doi.org/10.1063/1.1535211]
  21. S. Gong, X. He, Y. Chen, Z. Jiang, C. Zhong, D. Ma, J. Qin, and C. Yang, J. Mater. Chem., 22, 2894 (2012). [DOI: https://doi.org/10.1039/c1jm14903b]
  22. J. Lee, N. Chopra, S. H. Eom, Y. Zheng, J. Xue, F. So, and J. Shi, Appl. Phys. Lett., 93, 123306 (2008). [DOI: https://doi.org/10.1063/1.2978235]
  23. P. P. Sun, J. P. Duan, H. T. Shih, and C. H. Cheng, Appl. Phys. Lett., 81, 792 (2002). [DOI: https://doi.org/10.1063/1.1497714