• 제목/요약/키워드: Transparent conducting layer

검색결과 144건 처리시간 0.046초

Highly Sensitive and Transparent Touch Sensor by a Double Structure of Single Layer Graphene

  • Kim, Youngjun;Jung, Hyojin;Jin, Hyungki;Chun, Sungwoo;Park, Wanjun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.228.2-228.2
    • /
    • 2014
  • Characteristics of high Fermi velocity, high mechanical strength, and transparency offer tremendous advantages for using graphene as a promising transparent conducting material [1] in electronic devices. Although graphene is a prospective candidate for touch sensor with strong mechanical properties [2] and flexibility, only few investigations have been carried out in the field of sensor as a device form. In this study, we suggest ultra-highly sensitive and transparent graphene touch sensor fabricated by single layer graphenes. One of the graphene layers is formed in the top panel as a disconnected graphene beam transferred on PDMS, and the other of the graphene layer is formed with line-patterning on the bottom panel of triple structure PET/PI/SiO2. The touch sensor shows characteristics of flexible. Its transmittance is approximately 75% where transmittance of the top panel and the bottom panel are 86.3% and 87%, respectively, at 550 nm wavelength. Sheet resistance of each graphene layer is estimated as low as $971{\Omega}/sq$. The results show that the conductance change rate (${\Delta}C/C0$) is $8{\times}105$ which depicts ultra-high sensitivity. Moreover, reliability characteristic confirms consistent behavior up to a 100-cycle test.

  • PDF

Improvement of Reliability by Using Fluorine Doped Tin Oxide Electrode for Ta2O5 Based Transparent Resistive Switching Memory Devices

  • Lee, Do Yeon;Baek, Soo Jung;Ryu, Sung Yeon;Choi, Byung Joon
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제16권1호
    • /
    • pp.1-6
    • /
    • 2016
  • Purpose: Fluorine doped tin oxide (FTO) bottom electrode for $Ta_2O_5$ based RRAM was studied to apply for transparent resistive switching memory devices owing to its superior transparency, good conductivity and chemical stability. Methods: $ITO/Ta_2O_5/FTO$ (ITF) and $ITO/Ta_2O_5/Pt$ (ITP) devices were fabricated on glass and Si substrate, respectively. UV-visible (UV-VIS) spectroscopy was used to examine transparency of the ITF device and its band gap energy was determined by conventional Tauc plot. Electrical properties, such as electroforming and voltage-induced RS characteristics were measured and compared. Results: The device with an FTO bottom electrode showed good transparency (>80%), low forming voltage (~-2.5V), and reliable bipolar RS behavior. Whereas, the one with Pt electrode showed both bipolar and unipolar RS behaviors unstably with large forming voltage (~-6.5V). Conclusion: Transparent and conducting FTO can successfully realize a transparent RRAM device. It is concluded that FTO electrode may form a stable interface with $Ta_2O_5$ switching layer and plays as oxygen ion reservoir to supply oxygen vacancies, which eventually facilitates a stable operation of RRAM device.

환경신뢰성이 확보된 투명전도성 필름을 위한 비공유 걸합에 의한 단일벽 탄소나노튜브의 $TiO_2$ 코팅 (Noncovalent Titania Wrapping of Single-Walled Carbon Nanotubes for Environmentally Stable Transparent Conductive Thin Films)

  • 한중탁;김준석;;정희진;정승열;이건웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 춘계학술대회 논문집
    • /
    • pp.20-20
    • /
    • 2010
  • We present a simple process for the fabrication of high performance transparent conducting films that contain single-walled carbon nanotubes (SWCNTs) noncovalently coated with an ultrathin titania layer. The hydrophobic interactions between nanotube surfaces and the acetylacetone (acac) ligands used to stabilize the $TiO_2$ precursor provide an interesting alternative method for noncovalently coating the SWCNTs with a titania layer. The ultrathin titania layer on SWCNTs prevented the oxidation of functionalized SWCNTs at high temperatures, and protected against water molecule absorption.

  • PDF

환경신뢰성이 확보된 투명전도성 필름을 위한 비공유 결합에 의한 단일벽 탄소나노튜브의 $TiO_2$ 코팅 (Noncovalent Titania Wrapping of Single-Walled Carbon Nanotubes for Environmentally Stable Transparent Conductive Thin Films)

  • 한중탁;김준석;정희진;정승열;이건웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.279-279
    • /
    • 2010
  • We present a simple process for the fabrication of high performance transparent conducting films that contain single-walled carbon nanotubes (SWCNTs) noncovalently coated with an ultrathin titania layer. The hydrophobic interactions between nanotube surfaces and the acetylacetone (acac) ligands used to stabilize the $TiO_2$ precursor provide an interesting alternative method for noncovalently coating the SWCNTs with a titania layer. The ultrathin titania layer on SWCNTs prevented the oxidation of functionalized SWCNTs at high temperatures, and protected against water molecule absorption.

  • PDF

Conducting ZnO Thin Film Fabrication by UV-enhanced Atomic Layer Deposition

  • 김세준;김홍범;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.211.1-211.1
    • /
    • 2013
  • We fabricate the conductive zinc oxide(ZnO) thin film using UV-enhanced atomic layer deposition. ZnO is semiconductor with a wide band gap(3.37eV) and transparent in the visible region. ZnO can be deposited with various method, such as metal organic chemical vapour deposition, magnetron sputtering and pulsed laser ablation deposition. In this experiment, ZnO thin films was deposited by atomic layer deposition using diethylzinc (DEZ) and D.I water as precursors with UV irradiation during water dosing. As a function of UV exposure time, the resistivity of ZnO thin films decreased dramatically. We were able to confirm that UV irradiation is one of the effective way to improve conductivity of ZnO thin film. The resistivity was investigated by 4 point probe. Additionally, we confirm the thin film composition is ZnO by X-ray photoelectron spectroscopy. We anticipate that this UV-enhanced ZnO thin film can be applied to electronics or photonic devices as transparent electrode.

  • PDF

투명전극용 ZnO/Ti/ZnO 박막의 급속열처리 효과 (Effect of Rapid Thermal Annealing on the Properties of Transparent Conducting ZnO/Ti/ZnO Thin Films )

  • 장진규;김대일
    • 열처리공학회지
    • /
    • 제35권6호
    • /
    • pp.314-318
    • /
    • 2022
  • Transparent conducting ZnO/Ti/ZnO tri-layer films deposited on glass substrate with DC and RF magnetron sputtering were rapid thermal annealed at 150, 300 and 450℃ for 5 minutes and then effect of annealing temperature on the structural and optoelectronics properties of the films were investigated. The structural properties are strongly related to annealing temperature and the largest grain size is observed in the films annealed at 450℃. The electrical resistivity also decreases as low as 7.7 × 10-4 Ωcm. The visible transmittance also depends on the annealing temperature. The films annealed at 450℃ show a higher transmittance of 80.6% in this study.

Electrical and Optical Properties of Asymmetric Dielectric/Metal/Dielectric (D/M/D) Multilayer Electrode Prepared by Radio-Frequency Sputtering for Solar Cells

  • Pandey, Rina;Lim, Ju Won;Lim, Keun Yong;Hwang, Do Kyung;Choi, Won Kook
    • 센서학회지
    • /
    • 제24권1호
    • /
    • pp.15-21
    • /
    • 2015
  • Transparent and conductive multilayer thin films consisting of three alternating layers FZTO/Ag/$WO_3$ have been fabricated by radio-frequency (RF) sputtering for the applications as transparent conducting oxides and the structural and optical properties of the resulting films were carefully studied. The single layer fluorine doped zinc tin oxide (FZTO) and tungsten oxide ($WO_3$) films grown at room temperature are found to have an amorphous structure. Multilayer structured electrode with a few nm Ag layer embedded in FZTO/Ag/$WO_3$ (FAW) was fabricated and showed the optical transmittance of 87.60 % in the visible range (${\lambda}=380{\sim}770nm$), quite low electrical resistivity of ${\sim}10^{-5}{\Omega}cm$ and the corresponding figure of merit ($T^{10}/R_s$) is equivalent to $3.0{\times}10^{-2}{\Omega}^{-1}$. The resultant power conversion efficiency of 2.50% of the multilayer based OPV is lower than that of the reference commercial ITO. Asymmetric D/M/D multilayer is a promising transparent conducting electrode material due to its low resistivity, high transmittance, low temperature deposition and low cost components.

유·무기 전도성 물질을 함유한 UV 경화형 다층 코팅의 대전방지 특성 (Antistatic Behavior of UV-curable Multilayer Coating Containing Organic and Inorganic Conducting Materials)

  • 김화숙;김현경;김양배;홍진후
    • 접착 및 계면
    • /
    • 제3권3호
    • /
    • pp.22-29
    • /
    • 2002
  • 하층에 유 무기 전도성 물질을 코팅하고 상층은 다관능성 아크릴레이트를 코팅한 다층코팅의 자외선 경화형 시스템을 도입하였다. 이러한 다층코팅은 투명한 PMMA, PC, PET 등의 기재 위에 wet and wet 방식의 코팅 방법을 사용하여 제조하였다. 도막의 표면저항과 물성은 상층 두께의 변화와 상대 습도를 다르게 하여 측정하였다. 상층두께가 $10{\mu}m$ 이하일 때 $10^8{\sim}10^{10}{\Omega}/cm^2$의 표면저항을 나타냈으며 표면 물성은 단층코팅에 비해서 다층코팅이 더 우수하게 나타났다. 그리고 다층코팅에서의 도판트 이동효과는 접촉각과 FT-IR/ATR을 통해 관찰하였다. 하층이 무기 전도성 물질인 경우에는 관찰되지 않는 도판트(DBSA)의 필름-기재 계면에서 필름-공기 계면 쪽으로 이행되는 거동이 유기전도성 물질인 경우에는 관찰되었다.

  • PDF

Characteristics and Fabrication of ZTO/Ag/ ZTO Multilayer Transparent Conducting Electrode

  • Cho, Se-Hee;Yang, Jeong-Do;Wei, Chang-Hwan;Pandeyd, Rina;Byun, Dong-Jin;Choia, Won-Kook
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.339-339
    • /
    • 2013
  • We study on the optical and electrical properties of indium-free ZTO(ZnSnO)/Ag/ZTO (ZAZ) multilayer electrodes for the low-cost transparent electrode. In the first step, each single layer was deposited using rf magnetron in-line sputter with various working pressure based on $O_2$/$Ar+O_2$ ratio (0~3%) and power at room temperature. Secondly, we studied the optical and electrical properties by analyzing the refractive index, extinction coefficient, transmittance and resistivity of each layer. Finally, we optimized the thickness of each layer using macleod simulation program based on the analyzed optical properties and fabricated the multilayer electrode. As a result, We achieved a low sheet resistance of $11{\Omega}$/sq and anaverage transmittance of 80% in the visible region of light (380~780 nm). This indicates that indium-free ZAZ multilayer electrode is a promising low-cost and low-temperature processing electrode scheme.

  • PDF

Study of ITO/ZnO/Ag/ZnO/ITO Multilayer Films for the Application of a very Low Resistance Transparent Electrode on Polymer Substrate

  • Han, Jin-Woo;Han, Jeong-Min;Kim, Byoung-Yong;Kim, Young-Hwan;Kim, Jong-Yeon;Ok, Chul-Ho;Seo, Dae-Shik
    • 한국전기전자재료학회논문지
    • /
    • 제20권9호
    • /
    • pp.798-801
    • /
    • 2007
  • Multilayer transparent electrodes, having a much lower electrical resistance than the widely used transparent conducting oxide electrodes, were prepared by using radio frequency magnetron sputtering. The multilayer structure consisted of five layers, indium tin oxided (ITO)/zinc oxide (ZnO)/Ag/zinc oxide (ZnO)/ITO. With about 50 nm thick ITO films, the multilayer showed a high optical transmittance in the visible range of the spectrum and had color neutrality. The electrical and optical properties of ITO/ZnO/Ag/ZnO/ITO multilayer were changed mainly by Ag film properties, which were affected by the deposition process of the upper layer. Especially ZnO layer was improved to adhesion of Ag and ITO. A high quality transparent electrode, having a resistance as low as and a high optical transmittance of 91% at 550 nm, was obtained. It could satisfy the requirement for the flexible OLED and LCD.