• Title/Summary/Keyword: Transparent conducting

Search Result 505, Processing Time 0.033 seconds

The fabrication of textured ZnO:Al films using HCI wet chemical etching (후 식각법을 이용한 Textured ZnO:Al 투명전도막 제조)

  • Yoo, Jin-Su;Lee, Jeong-Chul;Kang, Ki-Hwan;Kim, Seok-Ki;Yoon, Kyung-Hoon;Song, Jin-Soo;Park, I-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1482-1484
    • /
    • 2002
  • Transparent conductive oxides (TCO) are necessary as front electrode for most thin film solar cell. In our paper, transparent conducting aluminum-doped Zinc oxide films (ZnO:Al) were prepared by rf magnetron sputtering on glass (Corning 1737) substrate as a variation of the deposition condition. After deposition, the smooth ZnO:Al films were etched in diluted HCI (0.5%) to examine the electrical and surface morphology properties as a variation of the time. The most important deposition condition of surface-textured ZnO films by chemical etching is the processing pressure and the substrate temperature. In low pressures (0.9mTorr) and high substrate temperatures $({\leq}300^{\circ}C)$, the surface morphology of films exhibits a more dense and compact film structure with effective light-trapping to apply the silicon thin film solar cells.

  • PDF

Some properties of ZnO:Al Transparent Conducting Films by DC Magnetron Sputtering Method (DC 마그네트론 스퍼터법에 의한 ZnO:Al 투명전도막 특성)

  • Park, Kang-Il;Kim, Byung-Sub;Kim, Hyun-Su;Lim, Dong-Gun;Park, Gi-Yub;Lee, Se-Jong;Kwak, Dong-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.143-146
    • /
    • 2003
  • Al doped Zinc Oxide(ZnO:Al) films, which is widely used as a transparent conductor in optoelectronic devices such as solar cell, liquid crystal display, plasma display panel, thermal heater, and other sensors, were prepared by using the capacitively coupled DC magnetron sputtering method. The influence of the substrate temperature, working gas pressure and discharge power on the electrical, optical and morphological properties were investigated experimentally. The consideration on the effect of doping amounts of Al on the electrical and optical properties of ZnO thin film were also carried out. ZnO:Al films with the optimum growth conditions showed resistivity of $9.42{\times}10^{-4}\;{\Omeg}-cm$ and transmittance of 90.88% for 840nm in film thickness in the wavelength range of the visible spectrum.

  • PDF

Solution-Processed Anti Reflective Transparent Conducting Electrode for Cu(In,Ga)Se2 Thin Film Solar Cells (CIGS 박막태양전지를 위한 반사방지특성을 가진 용액공정 투명전극)

  • Park, Sewoong;Park, Taejun;Lee, Sangyeob;Chung, Choong-Heui
    • Korean Journal of Materials Research
    • /
    • v.30 no.3
    • /
    • pp.131-135
    • /
    • 2020
  • Silver nanowire (AgNW) networks have been adopted as a front electrode in Cu(In,Ga)Se2 (CIGS) thin film solar cells due to their low cost and compatibility with the solution process. When an AgNW network is applied to a CIGS thin film solar cell, reflection loss can increase because the CdS layer, with a relatively high refractive index (n ~ 2.5 at 550 nm), is exposed to air. To resolve the issue, we apply solution-processed ZnO nanorods to the AgNW network as an anti-reflective coating. To obtain high performance of the optical and electrical properties of the ZnO nanorod and AgNW network composite, we optimize the process parameters - the spin coating of AgNWs and the concentration of zinc nitrate and hexamethylene tetramine (HMT - to fabricate ZnO nanorods. We verify that 10 mM of zinc nitrate and HMT show the lowest reflectance and 10% cell efficiency increase when applied to CIGS thin film solar cells.

Semiconductor Engineering (산화물반도체 트랜지스터의 전기적인 특성)

  • Oh, Teresa
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.390-392
    • /
    • 2013
  • The research was observed the characteristic of ZnO based oxide semiconductors for the transparent conducting display. The optical-physical properties of ZnO based oxide semiconductors) grown on p-Si wafer were presented. ZnO based oxide semiconductors was prepared by the RF magnetron sputtering system. The characteristic of ZnO based oxide semiconductorswas strongly influenced by the amount of localized electron state by the defects. The PL spectra moved to long wave number with increasing the defects in the film. The mobility of a-IGZO film was increased with increasing the oxygen gas flow rate. The resistivity of ZnO based oxide semiconductors was also related to the mobility of ZnO based oxide semiconductors, and the mobility increased at the sample with low resistivity. The electric characteristic of a-IGZO TFTs showed that it is an n-type semiconductor.

  • PDF

Combinatorial Approach for Systematic Studies in the Development of Transparent Electrodes

  • Kim, Tae-Won;Kim, Sung-Dae;Heo, Gi-Seok;Lee, Jong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.28-28
    • /
    • 2008
  • We have demonstrated the combinatorial synthesis of a variety of transparent conducting oxides using a combinatorial sputter system. The effects of a wide range of Nb or Zn doping rate on the optical and electrical properties of Indium-tin oxides (ITO) films were investigated. The Nb or Zn doped ITO films were fabricated on glass substrates, using combinatorial sputtering system which yields a linear composition spread of Nb or Zn concentration in ITO films in a controlled manner by co-sputtering two targets of ITO and $Nb_2O_5$ or ITO and ZnO. We have examined the work-function, resistivity, and optical properties of the Nb or Zn-doped ITO films. Furthermore, the effects of Hz plasma treatment on the physical properties of Ga or Zn doped ITO films synthesized by combinatorial sputter system were investigated.

  • PDF

Continuous Roll-to-Roll(R2R) sputtering system for growing flexible and transparent conducting oxide electrode at room temperature

  • Park, Yong-Seok;Jeong, Jin-A;Park, Ho-Kyun;Kim, Han-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1575-1577
    • /
    • 2009
  • We have investigated the characteristics of transparent indium zinc oxide(IZO)/Ag/IZO multilayer electrode grown on polyethylene terephthalate (PET) substrates using a specially designed roll-to-roll sputtering system for use in flexible device are described. By the continuous R2R sputtering of the bottom IZO, Ag, and top IZO layers at room temperature, we were able to fabricate an IZO-Ag-IZO multilayer electrode with a sheet resistance of 6.15 ${\Omega}$/square, optical transmittance of 87.4 %, and figure of merit value of 42.03 10-3 ${\Omega}$-1. In addition, the IZO-Ag-IZO multilayer electrode exhibited superior flexibility to the RTR sputter grown single ITO electrode, due to the existence a ductile Ag layer between the IZO layers. This indicates that the RTR sputtered IZO-Ag-IZO multilayer is a promising flexible electrode that can substitute for the conventional single ITO electrode grown by bath type sputtering for use in low cost flexible device, due to its low resistance, high transparency, superior flexibility and fast preparation by the R2R process.

  • PDF

Properties of ITO thin films deposited by RF magnetron sputtering with process pressure (RF 마그네트론 스퍼터링법으로 제작된 ITO 박막의 공정압력 변화에 따른 특성)

  • Jeong, Seong-Jin;Kim, Deok-Kyu;Kim, Hong-Bae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.4
    • /
    • pp.83-86
    • /
    • 2010
  • The transparent electrode properties of ITO films deposited by RF magnetron sputtering with process pressure were investigated. The ITO thin films was deposited on a glass substrate using a target with 3in diameter sintered at a ratio of $In_2O_3$ : $SnO_2$ (9 : 1). 200-nm-thick ITO thin films were manufactured by various process pressures ($2.0{\times}10^{-2}$, $7.0{\times}10^{-3}$ and $2.0{\times}10^{-3}$ Torr). The optical transmittance and resistivity of the deposited ITO thin films showed a relatively satisfactory result under $10^{-2}$ Torr. For high process pressure, the optical transmittance was below 80%, while for low process pressure, the optical transmittance was above 85%. As a result of of mobility, resistivity and carrier concentration by Hall measurement, we obtained satisfactory properties to apply into a transparent conducting thin film.

Effect of Doping Amounts of Al2O3 and Discharge Power on the Electrical Properties of ZnO Transparent Conducting Films (ZnO 투명 전도막의 전기적 특성에 미치는 Al2O3 의 도핑 농도 및 방전전력의 효과)

  • Park Min-Woo;Park Kang-Il;Kim Byung-Sub;Lee Se-Jong;Kwak Dong-Joo
    • Korean Journal of Materials Research
    • /
    • v.14 no.5
    • /
    • pp.328-333
    • /
    • 2004
  • Transparent ZnO:Al conductor films for the optoelectronic devices were deposited by using the capacitively coupled DC magnetron sputtering method. The effect of Al doping concentration and discharge power on the electrical and optical properties of the films was studied. The film resistivity of $8.5${\times}$10^{-4}$ $\Omega$-cm was obtained at the discharge power of 40 W with the ZnO target doped with 2 wt% $Al_2$$_O3$. The transmittance of the 840 nm thick film was 91.7% in the visible waves. Increasing doping concentration of 3 wt% $Al_2$$O_3$ in ZnO target results in significant decrease of film resistivity, which may be due to the formation of $Al_2$$O_3$ particles in the as-deposited ZnO:Al film and the reduced ZnO grain sizes. Increasing DC power from 40 to 60 W increases deposition rate by more than 50%, but can induce high defect density in the film, resulting in higher film resistivity.

Properties of Indium Tin Oxide Transparent Conductive Thin Films at Various Substrate and Annealing Temperature

  • Jeong, Woon-Jo;Kim, Seong-Ku;Kim, Jong-Uk;Park, Gye-Choon;Gu, Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.1
    • /
    • pp.18-22
    • /
    • 2002
  • ITO thin films with thickness of 3000 $\AA$ were fabricated by rf magnetron sputtering system with a 10 mol % SnO$_2$-90 mol % In$_2$O$_3$target at various substrate temperature and annealing temperature in air. And we investigated structural, electrical and optical characteristics of them. It's resistivity, carrier concentration and Hall mobility was 2$\times$10$\^$-4/ Ωcm, 7$\times$10$\^$20/∼ 9$\times$10$\^$20/ cm$\^$-3/ and 21∼23 cm$^2$/V$.$sec respectively. And it's optical transmittance and energy band gap was above 85 % in the visible range and 3.53 eV respectively.

Organic-Inorganic Perovskite for Highly Efficient Tandem Solar Cells (고효율 적층형 태양전지를 위한 유무기 페로브스카이트)

  • Park, Ik Jae;Kim, Dong Hoe
    • Ceramist
    • /
    • v.22 no.2
    • /
    • pp.146-169
    • /
    • 2019
  • To overcome the theoretical efficiency of single-junction solar cells (> 30 %), tandem solar cells (or multi-junction solar cells) is considered as a strong nominee because of their excellent light utilization. Organic-inorganic halide perovskite has been regarded as a promising candidate material for next-generation tandem solar cell due to not only their excellent optoelectronic properties but also their bandgap-tune-ability and low-temperature process-possibility. As a result, they have been adopted either as a wide-bandgap top cell combined with narrow-bandgap silicon or CuInxGa(1-x)Se2 bottom cells or for all-perovskite tandem solar cells using narrow- and wide-bandgap perovskites. To successfully transition perovskite materials from for single junction to tandem, substantial efforts need to focus on fabricating the high quality wide- and narrow-bandgap perovskite materials and semi-transparent electrode/recombination layer. In this paper, we present an overview of the current research and our outlook regarding perovskite-based tandem solar technology. Several key challenges discussed are: 1) a wide-bandgap perovskite for top-cell in multi-junction tandem solar cells; 2) a narrow-bandgap perovskite for bottom-cell in all-perovskite tandem solar cells, and 3) suitable semi-transparent conducting layer for efficient electrode or recombination layer in tandem solar cells.