• Title/Summary/Keyword: Transparent Layer

Search Result 683, Processing Time 0.028 seconds

Direct Printing and Patterning of Highly Uniform Graphene Nanosheets for Applications in Flexible Electronics

  • Gu, Ja-Hun;Lee, Tae-Yun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.39.2-39.2
    • /
    • 2011
  • With the steady increase in the demand for flexible devices, mainly in display panels, researchers have focused on finding a novel material that have excellent electrical properties even when it is bended or stretched, along with superior mechanical and thermal properties. Graphene, a single-layered two-dimensional carbon lattice, has recently attracted tremendous research interest in this respect. However, the limitations in the growing method of graphene, mainly chemical vapor deposition on transition metal catalysts, has posed severe problems in terms of device integration, due to the laborious transfer process that may damage and contaminate the graphene layer. In addition, to lower the overall cost, a fabrication technique that supports low temperature and low vacuum is required, which is the main reason why solution-based process for graphene layer deposition has become the hot issue. Nonetheless, a direct deposition method of large area, few-layered, and uniform graphene layers has not been reported yet, along with a convenient method of patterning them. Here, we report an evaporation-induced technique for directly depositing few layers of graphene nanosheets with excellent uniformity and thickness controllability on any substrate. The printed graphene nanosheets can be patterned into desired shapes and structures, which can be directly applicable as flexible and transparent electrode. To illustrate such potential, the transport properties and resistivity of the deposited graphene layers have been investigated according to their thickness. The induced internal flow of the graphene solution during tis evaporation allows uniform deposition with which its thickness, and thus resistivity can be tuned by controlling the composition ratio of the solute and solvent.

  • PDF

A STUDY OF SURFACE ROUGHNESS OF COMPOSITE RESIN (복합레진의 표면조도에 관한 연구)

  • Park, Ki-Hyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.1
    • /
    • pp.108-115
    • /
    • 2000
  • This study was designed to compare the effect of polishing on surface roughness of composite resin. We used Z100(3M) composite resin and placed the composite resin in the hole (4mm thick and 4mm in diameter) of vinyl plate and polymerized it under manufacturer's instructions. Samples were divided into 5 groups by polishing methods. Group 1 was control: resin was polymerized under glass plate, Group 2: resin was polymerized without any polishing procedure, Group 3: resin was polymerized with a polishing procedure of abrasive disc, Group 4: bonding agent was applyed in thin layer and polymerized on the polished polymerized resin surface. Group 5: resin was polymerized under transparent celluloid strip. The surface roughness of each specimen was measured with Sufacoder SEF-30D (Kosaka lab. Ltd) under 0.08mm cut off, 0.05mm/s stylus speed, ${\times}40$ horizontal magnification, ${\times}5000$ vertical magnification. The results were as follows : 1. Group 1 showed the most smooth surface in this study. 2. Group 3 showed more rough surface than Group 2. Considering the surface roughness, it would be better to make the shape completely before polymerize the resin. To finish and polish after the polymerization of resin makes less smooth surface. 3. When we use the transparent celluloid strip, minimum finishing procedures are recommended. Any polishing procedure could not recover the smooth resin surface of celluloid strip. 4. Application and polymerization of the thin layer of bonding agent on the polished surface showed the minimum surface smoothing effect.

  • PDF

Characteristics of ZnO Thin Films by Means of ALD for the Application of Transparent TFT

  • ParkKo, Sang-Hee;Hwang, Chi-Sun;Kwack, Ho-Sang;Kang, Seung-Youl;Lee, Jin-Hong;Chu, Hye-Yong;Lee, Yong-Eui
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1564-1567
    • /
    • 2005
  • Zinc oxide thin films were grown at the t emperature of $100^{\circ}C$ and $150^{\circ}C$ by means of plasma enhanced atomic layer deposition (PEALD) and conventional atomic layer deposition for applying to the transparent thin film transistor (TTFT). The growth rate of $1.9{\AA}/cycle$ with oxygen plasma is similar to that of film grown with water. While the sheet resistivity of ZnO grown with water is 1233 ohm/sq, that of film grown with oxygen plasma was too high to measure with 4 point probe and hall measurement system. The resistivity of the films grown with oxygen plasma estimated to be $10^6$ times larger than that of the films grown with water. The difference of electrical property between two films was caused by the O/Zn atomic ratio. We fabricated ZnO-TFT by means of ALD for the first time and the ZnO channel fabricated with water showed saturation mobility of $0.398cm^2/V{\cdot}s$ with bottom gate configuration.

  • PDF

Characteristics of a-IGZO TFTs with Oxygen Ratio

  • Lee, Cho;Park, Ji-Yong;Mun, Je-Yong;Kim, Bo-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.341.1-341.1
    • /
    • 2014
  • In the advanced material for the next generation display device, transparent amorphous oxide semiconductors (TAOS) are promising materials as a channel layer in thin film transistor (TFT). The TAOS have many advantages for large-area application compared with hydrogenated amorphous silicon TFT (a-Si:H) and organic semiconductor TFT. For the reasonable characteristics of TAOS, The a-IGZO has the excellent performances such as low temperature fabrication (R.T~), high mobility, visible region transparent, and reasonable on-off ratio. In this study, we investigated how the electric characteristics and physical properties are changed as various oxygen ratio when magnetron sputtering. we analysis a-IGZO film by AFM, EDS and I-V measurement. decreasing the oxygen ratio, the threshold voltage is shifted negatively and mobility is increasing. Through this correlation, we confirm the effect of oxygen ratio. We fabricated the bottom-gate a-IGZO TFTs. The gate insulator, SiO2 film was grown on heavily doped silicon wafer by thermal oxidation method. a-IGZO channel layer was deposited by RF magnetron sputtering. and the annealing condition is $350^{\circ}C$. Electrode were patterned Al deposition through a shadow mask(160/1000 um).

  • PDF

Highly Transparent Indium Oxide Doped ZnO Spreading Layer for GaN Based Light Emitting Diodes

  • Lim, Jae-Hong;Park, Seong-Ju
    • Korean Journal of Materials Research
    • /
    • v.19 no.8
    • /
    • pp.443-446
    • /
    • 2009
  • This study develops a highly transparent ohmic contact scheme using indium oxide doped ZnO (IZO) as a current spreading layer for p-GaN in order to increase the optical output power of nitride-based lightemitting diodes (LEDs). IZO based contact layers of IZO, Ni/IZO, and NiO/IZO were prepared by e-beam evaporation, followed by a post-deposition annealing. The transmittances of the IZO based contact layers were in excess of 80% throughout the visible region of the spectrum. Specific contact resistances of $3.4\times10^{-4}$, $1.2\times10^{-4}$, $9.2\times0^{-5}$, and $3.6\times10^{-5}{\Omega}{\cdot}cm^2$ for IZO, Ni/Au, Ni/IZO, and NiO/IZO, respectively were obtained. The forward voltage and the optical output power of GaN LED with a NiO/IZO ohmic contact was 0.15 V lower and was increased by 38.9%, respectively, at a forward current of 20 mA compared to that of a standard GaN LED with an Ni/Au ohmic contact due to its high transparency, low contact resistance, and uniform current spreading.

Transparent Anodic Properties of In-doped ZnO thin Films for Organic Light Emitting Devices (In 도핑된 ZnO 박막의 투명 전극과 유기 발광 다이오드 특성)

  • Park, Young-Ran;Kim, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.6 s.301
    • /
    • pp.303-307
    • /
    • 2007
  • Transparent In-doped zinc oxide (IZO) thin films are deposited with variation of pulsed DC power at Ar atmosphere on coming 7059 glass substrate by pulsed DC magnetron sputtering. A c-axis oriented IZO thin films were grown in perpendicular to the substrate. The optical transmittance spectra showed high transmittance of over 80% in the UV-visible region and exhibited the absorption edge of about 350 nm. Also, the IZO films exhibited the resistivity of ${\sim}10^{-3}{\Omega}\;cm$ and the mobility of ${\sim}6cm/V\;s$. Organic Light-emitting diodes (OLEDs) with IZO/N,N'-diphenyl-N, N'-bis(3-methylphenl)-1, 1'-biphenyl-4,4'-diamine (TPD)/tris (8-hydroxyquinoline) aluminum ($Alq_3$)/LiF/Al configuration were fabricated. LiF layer inserted is used as an interfacial layer to increase the electron injection. Under a current density of $100\;mA/cm^2$, the OLEDs show an excellent efficiency (9.4 V turn-on voltage) and a good brightness ($12000\;cd/m^2$) of the emission light from the devices. These results indicate that IZO films hold promise for anode electrodes in the OLEDs application.

Optimization of active layer for the fabrication of transparent thin film transistor based on ZnO (ZnO 기반의 투명 박막 트랜지스터 제작을 위한 Active-layer의 최적화에 대한 연구)

  • Chang, Seong-Pil;Lee, Sang-Gyu;Son, Chang-Wan;Leem, Jae-Hyeon;Song, Yong-Won;Ju, Byung-Kwon;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.94-95
    • /
    • 2007
  • We have observed electrical properties of ZnO thin films for the fabrication of transparent thin film transistor. ZnO thin films were deposited on $Al_2O_3$(0001) substrate at various temperatures by pulsed laser deposition(PLD). The third of harmonic(355nm) Nd:YAG laser was used for pulsed laser deposition. X-ray diffraction(XRD), field emission-scanning electron microscope(FE-SEM), and photoluminescence were used to characterize physical and optical properties of ZnO thin film.. The results indicated the ZnO film showed good optical properties as increasing temperatures, with low FWHM of exciton-related peak and XRD(0002) peak.

  • PDF

The Influence of Ag Thickness on the Electrical and Optical Properties of ZnO/Ag/SnO2 Tri-layer Films

  • Park, Yun-Je;Choi, Jin-Young;Choe, Su-Hyeon;Kim, Yu-Sung;Cha, Byung-Chul;Kim, Daeil
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.3
    • /
    • pp.145-149
    • /
    • 2019
  • Transparent and conductive ZnO/Ag/SnO2 (ZAS) tri-layer films were deposited onto glass substrates at room temperature by using radio frequency (RF) and direct current (DC) magnetron sputtering. The thickness values of the ZnO and $SnO_2$ thin films were kept constant at 50 nm and the value for Ag interlayer was varied as 5, 10, 15, and 20 nm. In the XRD pattern the diffraction peaks were identified as the (002) and (103) planes of ZnO, while the (111), (200), (220), and (311) planes could be attributed to the Ag interlayer. The optical transmittance and electrical resistivity were dependent on the thickness of the Ag interlayer. The ZAS films with a 10 nm thick Ag interlayer exhibited a higher figure of merit than the other ZAS films prepared in this study. From the observed results, a ZAS film with a 10 nm thick Ag interlayer was believed to be an alternative transparent electrode candidate for various opto-electrical devices.

Improved performance in flexible organic solar cells via optimization of highly transparent silver grid/graphene electrodes

  • Cha, Myoung Joo;Kim, Sung Man;Kang, Ju Hwan;Kang, Seong Jun;Seo, Jung Hwa;Walker, Bright
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.152-152
    • /
    • 2016
  • We studied the effect of the silver grid size on graphene transparent conducting films for flexible organic solar cells (OSCs). The silver grid was used an assistant layer of the graphene to reduce the sheet resistance of substrates. Silver grid with various graphene sizes for optimizing transmittance and sheet resistance of substrates were fabricated on polyethylene terephthalate (PET) substrates to form the hybrid films. The optimized grid geometry on the single layer graphene (SLG) was the grid dimension $200{\mu}m{\times}200{\mu}m{\times}50nm{\times}2{\mu}m$ (length ${\times}$ width ${\times}$ height ${\times}$ linewidth), where the sheet resistance was $55.73{\Omega}/square$ with the average transmittance of ~ 92.83 % at 550 nm. The properties of the OSCs fabricated using SLG with optimized silver grids on PET substrates show a short circuit current of $10.9mA/cm^2$, an open circuit voltage of 0.58 V, a fill factor of 60.8 %, and a power conversion efficiency (PCE) of 3.9 %. The PCE was improved about 91% than that of the OSCs using the SLG without the silver grid. These results demonstrate that the optimized grid geometry to the based on the graphene transparent electrodes contribute to improving the performance of OSCs.

  • PDF

Low-resistance Transparent Plane Heating System using CVD Graphene (CVD 그래핀을 이용한 저저항 투명면상발열 시스템)

  • Yoo, Byongwook;Han, Sangsoo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.218-223
    • /
    • 2019
  • To prevent the low heating effect of heating system caused by the high sheet resistance of CVD graphene, multi-layered graphene was laminated to implement a Transparent plane heating system with good optical properties of low-resistance. Low-resistance plane heating system implemented by $300{\times}400{\times}5mm$ heating plane laminated multi-layered CVD graphene film and PWM control system to drive efficient power. A plane resistance value of $85.5{\Omega}/sq$ was measured on average for 4-layer CVD graphene film used as a heating plane. Thus, the transfer by thermal film as the method of implementing low-resistance CVD graphene is reasonable. The experimental results of heat test show that an average heat-rise rate in low-resistance, transperent plane heating system using CVD graphene is $10^{\circ}C/min$ and has an optical transmittance rate of 86.44%. Therefore, the proposed heating system is applicable to large window glass and vehicle heating window-shild-glass.