• Title/Summary/Keyword: Transparent Conductive Oxide

Search Result 289, Processing Time 0.031 seconds

Indium doped ZnO:Al thin films prepared by pulsed laser deposition for transparent conductive oxide electrode applications (펄스 레이저 방법으로 증착된 투명 산화물 전극용 인듐이 도핑된 ZnO:Al 박막)

  • Xian, Cheng-Ji;Lee, Chang-Hyun;Lee, Ye-Na;Seong, Nak-Jin;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.27-27
    • /
    • 2008
  • The different concentration Indium doped ZnO:Al films were grown on glass substrates (Corning 1737) at $200^{\circ}C$ by pulsed laser deposition. The indium doping in AZO films shows the critical effect on the crystallinity, resistivity, and optical properties of the films. The AZO films doped with 0.3 atom % indium content exhibit the highest crystallinity, the lowest resistivity of $4.5\times10^{-4}\Omega$-cm, and the maximum transmittance of 93%. The resistivity of the indium doped-AZO films is strongly related with the crystallinity of the films. The carrier concentration in the indium doped-AZO films linearly increases with increasing indium concentration. The mobility of the AZO films with increasing indium concentration was reduced with an increase in carrier concentration and the decrease in mobility was attributed to the ionized impurity scattering mechanism. In an optical transmittance, the shift of the optical absorption edge to shorter wavelength strongly depends on the electronic carrier concentration in the films.

  • PDF

Influence of Substrate Bias Voltage on the Electrical and Optical Properties of IWO Thin Films (기판 인가 전압에 따른 IWO 박막의 전기적, 광학적 특성)

  • Jae-Wook Choi;Yeon-Hak Lee;Min-Sung Park;Young-Min Kong;Daeil Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.9
    • /
    • pp.372-376
    • /
    • 2023
  • Transparent conductive tungsten (W) doped indium oxide (In2O3; IWO) films were deposited at different substrate bias voltage (-Vb) conditions at room temperature on glass substrates by radio frequency (RF) magnetron sputtering and the influence of the substrate bias voltage on the optical and electrical properties was investigated. As the substrate bias voltage increased to -350 Vb, the IWO films showed a lower resistivity of 2.06 × 10-4 Ωcm. The lowest resistivity observed for the film deposited at -350 Vb could be attributed to its higher mobility, of 31.8 cm2/Vs compared with that (6.2 cm2/Vs) of the films deposited without a substrate bias voltage (0 Vb). The highest visible transmittance of 84.1 % was also observed for the films deposited at the -350 Vb condition. The X-ray diffraction observation indicated the IWO films deposited without substrate bias voltage were amorphous phase without any diffraction peaks, while the films deposited with bias voltage were polycrystalline with a low In2O3 (222) diffraction peak and relatively high intensity (431) and (046) diffraction peaks. From the observed visible transmittance and electrical properties, it is concluded that the opto-electrical performance of the polycrystalline IWO film deposited by RF magnetron sputtering can be enhanced with effective substrate bias voltage conditions.

Effect of Working Pressure on the Structural, Electrical, and Optical Properties of GTZO Thin Films (공정압력이 GTZO 박막의 구조적, 전기적 및 광학적 특성에 미치는 영향)

  • Byeong-Kyun Choi;Yang-Hee Joung;Seong-Jun Kang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.39-46
    • /
    • 2024
  • In this study, GTZO(Ga-Ti-Zn-O) thin films were deposited at various working pressures (1~7mTorr) by RF magnetron sputtering to examine the structural, electrical, and optical properties. All GTZO thin films exhibited c-axis preferential growth regardless of working pressure, the GTZO thin film deposited at 1mTorr showed the most excellent crystallinity having 0.38˚ of FWHM. The average transmittance in the visible light region (400~800nm) showed 80% or more regardless of the working pressure. We could observed the Burstein-Moss effect that carrier concentration decrease with the increase of working pressure and thus the energy band gap is narrowed. Figure of merits of GTZO thin film deposited at 1mTorr showed the highest value of 9.08 × 103 Ω-1·cm-1, in this case resistivity and average transmittance in the visible light region were 5.12 × 10-4 Ω·cm and 80.64%, respectively.

The Study of Transmittance and Conductivity in ZnO/Ag Multilayer Films (ZnO/Ag Multilayer의 투과율과 전도성에 관한 연구)

  • Kim, Yun-Hae;Kim, Do-Wan;Murakami, Ri-Ichi;Moon, Kyung-Man;Lee, Sung-Yul
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.39-43
    • /
    • 2011
  • This study has lowered the specific resistance by coating a thin film layer of Ag, playing the role of the electron donor on the ZnO that is used usefully for the transparent conductive oxides. Presently, this study has examined the transmittance and electric characteristics according to the thickness of the Ag thin film layer. Also, this study has observed the transmittance and electric characteristics according to the uppermost ZnO thin film layer of ZnO/Ag/ZnO symmetric film and has conducted the theoretical investigation. In order to observe the transmittance and electric characteristics according to the thickness of the Ag thin film layer and the uppermost ZnO thin film layer, this study conducted the film deposition at room temperature while making use of the DC magnetron sputtering system. In order to see the changes in the thickness of the Ag thin film layer, this study coated a thin film while increasing by 4nm; and, in order to see the changes in the thickness of uppermost ZnO thin film layer, it performed the thin film coating by increasing by 5nm. From the experimental result, the researchers observed that the best transmittance could be obtained when the thickness of the Ag thin film layer was 8nm, but the resistance and mobility increased as the thickness got larger. On the other hand, when the thickness of the uppermost ZnO thin film layer was 20nm, the experiment yielded the best transmittance with excellent electric characteristics. Also, when compared the ZnO/Ag asymmetric film with the ZnO/Ag/ZnO symmetric film, the ZnO/Ag asymmetric film showed better transmittance and electric characteristics.

Effect of Sputtering Powers on Mg and Ga Co-Doped ZnO Thin Films with Transparent Conducting Characteristics (RF 마그네트론 스퍼터를 이용하여 제작한 MGZO 박막의 구조적 및 전기적, 광학적 특성에 미치는 스퍼터링 전력의 영향)

  • Kim, In Young;Shin, Seung Wook;Kim, Min Sung;Yun, Jae Ho;Heo, Gi Seok;Jeong, Chae Hwan;Moon, Jong-Ha;Lee, Jeong Yong;Kim, Jin Hyoek
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.155-160
    • /
    • 2013
  • ZnO thin films co-doped with Mg and Ga (MxGyZzO, x + y + z = 1, x = 0.05, y = 0.02 and z = 0.93) were prepared on glass substrates by RF magnetron sputtering with different sputtering powers ranging from 100W to 200W at a substrate temperature of $350^{\circ}C$. The effects of the sputtering power on the structural, morphological, electrical, and optical properties of MGZO thin films were investigated. The X-ray diffraction patterns showed that all the MGZO thin films were grown as a hexagonal wurtzite phase with the preferred orientation on the c-axis without secondary phases such as MgO, $Ga_2O_3$, or $ZnGa_2O_4$. The intensity of the diffraction peak from the (0002) plane of the MGZO thin films was enhanced as the sputtering power increased. The (0002) peak positions of the MGZO thin films was shifted toward, a high diffraction angle as the sputtering power increased. Cross-sectional field emission scanning electron microscopy images of the MGZO thin films showed that all of these films had a columnar structure and their thickness increased with an increase in the sputtering power. MGZO thin film deposited at the sputtering power of 200W showed the best electrical characteristics in terms of the carrier concentration ($4.71{\times}10^{20}cm^{-3}$), charge carrier mobility ($10.2cm^2V^{-1}s^{-1}$) and a minimum resistivity ($1.3{\times}10^{-3}{\Omega}cm$). A UV-visible spectroscopy assessment showed that the MGZO thin films had high transmittance of more than 80 % in the visible region and that the absorption edges of MGZO thin films were very sharp and shifted toward the higher wavelength side, from 270 nm to 340 nm, with an increase in the sputtering power. The band-gap energy of MGZO thin films was widened from 3.74 eV to 3.92 eV with the change in the sputtering power.

Characterization of Al-Doped ZnO Thin Film Grown on Buffer Layer with RF Magnetron Sputtering Method (버퍼 층을 이용한 RF 마그네트론 스퍼터 방법에 의한 Al:ZnO 박막의 성장)

  • No, Young-Soo;Park, Dong-Hee;Kim, Tae-Whan;Choi, Ji-Won;Choi, Won-Kook
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.3
    • /
    • pp.213-220
    • /
    • 2009
  • The optimal condition of low temperature deposition of transparent conductive Al-doped zinc oxide (AZO) films is studied by RF magnetron sputtering method. To achieve enhanced-electrical property and good crystallites quality, we tried to deposit on glass using a two-step growth process. This process was to deposit AZO buffer layer with optimal growth condition on glass in-situ state. The AZO film grown at rf 120 W on buffer layer prepared at RF $50{\sim}60\;W$ shows the electrical resistivity $3.9{\times}10^{-4}{\Omega}cm$, Carrier concentration $1.22{\times}10^{21}/cm^3$, and mobility $9.9\;cm^2/Vs$ in these results, The crystallinity of AZO film on buffer layer was similar to that of AZO film on glass with no buffer later but the electrical properties of the AZO film were 30% improved than that of the AZO film with no buffer layer. Therefore, the cause of enhanced electrical properties was explained to be dependent on degree of crystallization and on buffer layer's compressive stress by variation of $Ar^+$ ion impinging energy.

Optical Property of Zinc Oxide Thin Films Prepared by Using a Metal Naphthenate Precursor (금속 나프텐산염을 이용하여 제조한 ZnO 박막의 광학적 특성)

  • Lim, Y.M.;Jung, J.H.;Jeon, K.O.;Jeon, Y.S.;Hwang, K.S.
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.10 no.3
    • /
    • pp.193-203
    • /
    • 2005
  • Highly c-axis oriented nanocrystalline ZnO thin films on silica glass substrates were prepared by spin coating-pyrolysis process with a zinc naphthenate precursor. Only the XRD intensity peak of (002) phase was observed for all samples. With an increase in heat treatment temperature, the peak intensity of (002) phase increases. No significant aggregation of particle was present. From scanning probe microscopy analyses, three-dimensional grain growth, which was thought to be due to inhomogeneous substrate surface and c-axis oriented grain growth of the ZnO phase, was independent on heal-treatment temperature. Highly homogeneous surface of the highly-oriented ZnO film was observed at $800^{\circ}C$. All the films exhibited a high transmittance (above 80%) in visible region except film heat treated at $1000^{\circ}C$, and showed a sharp fundamental absorption edge at about $0.38{\sim}0.40{\mu}m$. The estimated energy band gap for all the films were within the range previously reported for films and single crystal. ZnO films, consisting of densely packed grains with smooth surface morphology were obtained by heat treatment at $600^{\circ}C{\sim}800^{\circ}C$, expected to be ideal for practical application, such as transparent conductive film and optical device.

  • PDF

Interfacial Control of Multi-functional CNT and ITO/PET Nanocomposites having Self-Sensing and Transparency (자체-감지능 및 광투과도를 지닌 CNT 및 ITO/PET 다기능성 나노복합소재의 계면 조절 연구)

  • Wang, Zuo-Jia;Kwon, Dong-Jun;Gu, Ga-Young;Park, Joung-Man
    • Composites Research
    • /
    • v.24 no.1
    • /
    • pp.45-50
    • /
    • 2011
  • Transparent and conductive carbon nanotube on polyethylene terephthalate (PET) were prepared by dip-coating method for self-sensing multi-functional nanocomposites. The changes in the electrical and optical properties of CNT coating mainly depended on the number of dip-coating, concentration of CNT solution. Consequently, the surface resistance and transmittance of CNT coating were sensitively controlled by the processing parameters. Surface resistance of CNT coating was measured using four-point method, and surface resistance of coated CNT could be better calculated by using the dual configuration method. Optical transmittance of PET film with CNT coating was evaluated using UV spectrum. Surface properties of coated CNT investigated by wettability test via static and dynamic contact angle measurement were consistent with each other. As dip-coating number increased, surface resistance of coated CNT decreased seriously, whereas the transmittance exhibited little lower due to the thicker CNT networks layer. Interfacial microfailure properties were investigated for CNT and indium tin oxide (ITO) coatings on PET substrates by electrical resistance measurement under cyclic loading fatigue test. CNT with high aspect ratio exhibited no change in surface resistance up to 2000 cyclic loading, whereas ITO with brittle nature showed a linear increase of surface resistance up to 1000 cyclic loading and then exhibited the level-off due to reduced electrical contact points based on occurrence of many micro-cracks.

Enhancement of Crystallinity in ZnO:Al Films Using a Two-Step Process Involving the Control of the Oxygen Pressure (산소 압력의 조절과 함께 두 번의 증착 과정을 이용한 ZnO:Al 박막에 결정성의 향상)

  • Moon, Tae-Ho;Yoon, Won-Ki;Lee, Seung-Yoon;Ji, Kwang-Sun;Eo, Young-Joo;Ahn, Seh-Won;Lee, Heon-Min
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.2
    • /
    • pp.128-133
    • /
    • 2010
  • ZnO:Al films were deposited by DC-pulsed magnetron sputtering using a two-step process involving the control of the oxygen pressure. The seed layers were prepared with various Ar to oxygen flow ratios and the bulk layers were deposited under pure Ar. As the oxygen pressure during the deposition of the seed layer increased, the crystallinity and degree of (002) texturing increased. The resistivity gradually decreased with increasing crystallinity from $4.7\times10^4\Omega{\cdot}cm$ (no seed) to $3.7\times10^4\Omega{\cdot}cm$ (Ar/$O_2$ = 9/1). The etched surface showed a crater-like structure and an abrupt morphology change appeared as the crystallinity was increased. The sample deposited at an Ar/$O_2$ flow ratio of 9/1 showed a very high haze value of 88% at 500 nm, which was explained by the large feature size of the craters, as shown in the AFM image.