Browse > Article
http://dx.doi.org/10.5757/JKVS.2010.19.2.128

Enhancement of Crystallinity in ZnO:Al Films Using a Two-Step Process Involving the Control of the Oxygen Pressure  

Moon, Tae-Ho (Devices and Materials Laboratory, LG Electronics)
Yoon, Won-Ki (Devices and Materials Laboratory, LG Electronics)
Lee, Seung-Yoon (Devices and Materials Laboratory, LG Electronics)
Ji, Kwang-Sun (Devices and Materials Laboratory, LG Electronics)
Eo, Young-Joo (Devices and Materials Laboratory, LG Electronics)
Ahn, Seh-Won (Devices and Materials Laboratory, LG Electronics)
Lee, Heon-Min (Devices and Materials Laboratory, LG Electronics)
Publication Information
Journal of the Korean Vacuum Society / v.19, no.2, 2010 , pp. 128-133 More about this Journal
Abstract
ZnO:Al films were deposited by DC-pulsed magnetron sputtering using a two-step process involving the control of the oxygen pressure. The seed layers were prepared with various Ar to oxygen flow ratios and the bulk layers were deposited under pure Ar. As the oxygen pressure during the deposition of the seed layer increased, the crystallinity and degree of (002) texturing increased. The resistivity gradually decreased with increasing crystallinity from $4.7\times10^4\Omega{\cdot}cm$ (no seed) to $3.7\times10^4\Omega{\cdot}cm$ (Ar/$O_2$ = 9/1). The etched surface showed a crater-like structure and an abrupt morphology change appeared as the crystallinity was increased. The sample deposited at an Ar/$O_2$ flow ratio of 9/1 showed a very high haze value of 88% at 500 nm, which was explained by the large feature size of the craters, as shown in the AFM image.
Keywords
ZnO:Al film; Transparent conductive oxide; Crystallinity; Si thin-film solar cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Müller, B. Rech, J. Springer, and M. Vanecek, Solar Energy 77, 917 (2004).   DOI
2 O. Kluth, G. Schöpe, J. Hüpkes, C. Agashe, J. Müller, and B. Rech, Thin Solid Films 442, 80 (2003).   DOI
3 T. Onuma, S. F. Chichibu, A. Uedono, Y.-Z. Yoo, T. Chikyow, T. Soda, M. Kawasaki, and H. Koinuma, Appl. Phys. Lett. 85, 5586 (2004).   DOI
4 W. Guo, A. Allenic, Y. B. Chen, X. Q. Pan, W. Tian, C. Adamo, and D. G. Schlom, Appl. Phys. Lett. 92, 072101 (2008).   DOI
5 D.-W. Kang, S.-H. Kuk, K.-S. Ji, S.-W. Ahn, and M.-K. Han, Mater. Res. Soc. Symp. Proc. 1153, A07-19 (2009).
6 Y. Zhao, S. Miyajima, Y. Ide, A. Yamada, and M. Konagai, Jpn. J. Appl. Phys. 41, 6417 (2002).   DOI
7 T. Moon, S.-T. Hwang, D.-R. Jung, D. Son, C. Kim, J. Kim, M. Kang, and B. Park, J. Phys. Chem. C 111, 4164 (2007).   DOI
8 Y. Zhang, H. Zheng, J. Su, B. Lin, and Z. Fu, J. Lumin. 124, 252 (2007).   DOI
9 C. Agashe, O. Kluth, J. Hüpkes, U. Zastrow, B. Rech, and M. Wuttig, J. Appl. Phys. 95, 1911 (2004).   DOI   ScienceOn
10 J. Owen, J. Hüpkes, and E. Bunte, Mater. Res. Soc. Symp. Proc. 1153, A07-08 (2009).
11 T. Moon, B. Lee, T.-G. Kim, J. Oh, Y. W. Noh, S. Nam, and B. Park, Appl. Phys. Lett. 86, 182904 (2005).   DOI
12 T. Moon, G. Y. Hong, H.-C. Lee, E.-A. Moon, B. W. Jeoung, S.-T. Hwang, J. S. Kim, and B.-G. Ryu, Electrochem. Solid-State Lett. 12, J61 (2009).   DOI