• 제목/요약/키워드: Transparent Conducting Oxide

검색결과 344건 처리시간 0.035초

기판온도 변화에 따른 ZnO:Al 투명 전도막의 특성 변화 (A study on the properties of transparent conductive ZnO:Al films on variation substrate temperature)

  • 양진석;성하윤;금민종;손인환;신성권;김경환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.525-528
    • /
    • 2001
  • ZnO:Al thin film can be used as a transparent conducting oxide(TCO) which has low electric resistivity and high optical transmittance for the front electrode of amorphous silicon solar cells and display devices. This study of electrical, crystallographic and optical properties of Al doped ZnO thin films prepared by Facing Targets Sputtering (FTS), where strong internal magnets were contained in target holders to confine the plasma between the targets, is described. Optimal transmittance and resistivity was obtained by controlling flow rate of O$_2$ gas and substrate temperature. When the of gas rate of 0.3 and substrate temperature 200$^{\circ}C$ , ZnO:Al thin film had strongly oriented c-axis and lower resistivity(<10$\^$-4/Ω-cm).

  • PDF

Improvement of Reliability by Using Fluorine Doped Tin Oxide Electrode for Ta2O5 Based Transparent Resistive Switching Memory Devices

  • Lee, Do Yeon;Baek, Soo Jung;Ryu, Sung Yeon;Choi, Byung Joon
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제16권1호
    • /
    • pp.1-6
    • /
    • 2016
  • Purpose: Fluorine doped tin oxide (FTO) bottom electrode for $Ta_2O_5$ based RRAM was studied to apply for transparent resistive switching memory devices owing to its superior transparency, good conductivity and chemical stability. Methods: $ITO/Ta_2O_5/FTO$ (ITF) and $ITO/Ta_2O_5/Pt$ (ITP) devices were fabricated on glass and Si substrate, respectively. UV-visible (UV-VIS) spectroscopy was used to examine transparency of the ITF device and its band gap energy was determined by conventional Tauc plot. Electrical properties, such as electroforming and voltage-induced RS characteristics were measured and compared. Results: The device with an FTO bottom electrode showed good transparency (>80%), low forming voltage (~-2.5V), and reliable bipolar RS behavior. Whereas, the one with Pt electrode showed both bipolar and unipolar RS behaviors unstably with large forming voltage (~-6.5V). Conclusion: Transparent and conducting FTO can successfully realize a transparent RRAM device. It is concluded that FTO electrode may form a stable interface with $Ta_2O_5$ switching layer and plays as oxygen ion reservoir to supply oxygen vacancies, which eventually facilitates a stable operation of RRAM device.

Effect of process parameters of antimony doped tin oxide films prepared on flexible substrate at room temperature

  • 이성욱;홍병유
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.175-175
    • /
    • 2010
  • Transparent conducting oxide (TCO) films are widely used as transparent conducting thin film material for application in various fields such as solar cells, optoelectronic devices, heat mirrors and gas sensors, etc. Recently the increased utilization of many transparent electrodes has accelerated the development of inexpensive TCO materials. Indium tin oxide (ITO) film is well-known for TCO materials because of its low resistivity, but there is disadvantage that it is too expensive. ZnO film is cheaper than ITO but it shows thermally poor stability. On the contrary, antimony-doped tin oxide films (ATO) are more stable than TCO films such as Al-doped zinc oxide (AZO) and ITO. Moreover, SnO2 film shows the best thermal and chemical stability, low cost and mechanical durability except the poor conductivity. However, annealing is proved to improve the conductivity of ATO film. Therefore, in this work, antimony (6 wt%) doped tin oxide films to improve the conductivity were deposited on 7059 corning glass by RF magnetron sputtering method for the application to transparent electrodes. In general, of all TCO films, glass is the most commonly selected substrate. However, for future development in flexible devices, glass is limited by its intrinsic inflexibility. In this study, we report the growth and properties of antimony doped tin oxide (ATO) films deposited on PES flexible substrate by using RF magnetron sputtering. The optimization process was performed varying the sputtering parameters, such as RF power and working pressure, and parameter effect on the structural, electrical and optical properties of the ATO films were investigated.

  • PDF

플랙시블 염료태양전지 특성에 미치는 ZnO 및 ITO의 영향 (Some properties on Conversion Efficiency of Flexible Film-Typed DSCs with ZnO:Al and ITO Transparent Conducting layers)

  • 김지훈;추영배;성열문;곽동주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1096_1097
    • /
    • 2009
  • Aluminium doped zinc oxide(ZnO:Al) thin film, which is mainly used as a transparent conducting electrode in electronic devices, has many advantages compared with conventional indium tin oxide(ITO). In this paper in order to investigate the possible application of ZnO:Al thin films as a transparent conducting electrode for flexible film-typed dye sensitized solar cell (FT-DSCs), ZnO:Al and ITO thin films were prepared on the polyethylene terephthalate (PET) substrate by r. f. magnetron sputtering method. Specially one-inched FT-DSCs using either a ZnO:Al or ITO electrode were also fabricated separately under the same manufacturing conditions. Some properties of both the FT-DSCs with ZnO:Al and ITO transparent electrodes, such as conversion efficiency, fill factor, and photocurrent were measured and compared with each other. The results showed that by doping the ZnO target with 2 wt% of $Al_2O_3$, the film deposited at discharge power of 200W resulted in the minimum resistivity of $2.2\times10^{-3}\Omega/cm$ and at ransmittance of 91.7%, which are comparable with those of commercially available ITO. Two types of FT-DSCs showed nearly the same tendency of I-V characteristics and the same value of conversion efficiencies. Efficiency of FT-DSCs using ZnO:Al electrode was around 2.6% and that of fabricated FT-DSCs using ITO was 2.5%. This means that ZnO:Al thin film can be used in FT-DSCs as a transparent conducting layer.

  • PDF

Effects of Annealing Temperature on Properties of Al-Doped ZnO Thin Films prepared by Sol-Gel Dip-Coating

  • Jun, Min-Chul;Koh, Jung-Hyuk
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권1호
    • /
    • pp.163-167
    • /
    • 2013
  • Aluminum doped zinc oxide (AZO) thin films have been prepared on the glass substrates (Corning 1737) by sol-gel dip-coating method employing zinc acetate and aluminum chloride hexahydrate for the transparent conducting oxide (TCO) applications. 1 at% Al was doped to the ZnO thin films. The effects of post-heating temperature on the crystallization, optical and electrical properties of the AZO films have been investigated. Experimental results showed that post-heating temperature affected the microstructure, electrical resistance, and optical transmittance of the AZO films. From the X-ray diffraction analysis, all films have hexagonal wurtzite crystal structure. Optical transmittance spectra of the AZO films exhibited transmittance higher than about 80% within the visible wavelength region and the optical direct band gap ($E_g$) of these films was increased with increasing post-heating temperature. A minimum resistivity of $2.5{\times}10^{-3}{\Omega}cm$ was observed at $650^{\circ}C$.

증착두께 및 산소도입속도가 IZO 필름의 전기 및 광학적 특성에 미치는 영향 (Effects of Deposition Thickness and Oxygen Introduction Flow Rate on Electrical and Optical Properties of IZO Films)

  • 박성환;하기룡
    • 공업화학
    • /
    • 제21권2호
    • /
    • pp.224-229
    • /
    • 2010
  • Transparent conducting oxide (TCO) 박막은 평판 디스플레이 산업에 널리 사용되고 있다. 화학적으로 우수한 투명전도성 Indium Zinc Oxide (IZO) 필름은 Indium Tin Oxide (ITO) 필름의 대체 물질로 관심을 끌고 있다. 본 연구에서는 90 : 10 wt%의 $In_2O_3$와 ZnO를 혼합하여 만든 타겟으로 전자빔 증착법을 이용하여 polynorbornene (PNB) 기판 위에 IZO 박막을 제조하였다. UV/Visible spectrophotometer, 4-Point Probe를 이용하여 증착 두께와 산소도입 속도에 따른 IZO 필름의 전기적 및 광학적 특성을 연구하였으며, SEM, XRD 및 XPS를 이용하여 증착된 IZO의 구조적 특성 및 표면조성비를 연구하였다.

동시 스퍼터링으로 제조한 AZO-ITO 혼합박막의 증착 중 수소 혼입 영향 분석 (Effect of H2 Addition on the Properties of Transparent Conducting Oxide Films Deposited by Co-sputtering of ITO and AZO)

  • 김혜리;김동호;이성훈;이건환
    • 한국표면공학회지
    • /
    • 제42권6호
    • /
    • pp.267-271
    • /
    • 2009
  • Multicomponent transparent conducting oxide films were deposited on glass substrates at 150 by dual magnetron sputtering of AZO and ITO targets. In the case of mixing a limited amount of ITO (10W), resistivity of TCO films was significantly increased compared to the AZO film; from $3.5{\times}10^{-3}$ to $9.7{\times}10^{-3}{\Omega}{\cdot}cm$. Deterioration of the electrical conductivity is attributed to the decreases in carrier concentration and Hall mobility. Improvement of the conductivity could be obtained for the films prepared with ITO powers larger than 40 W. The lowest resistivity ($\rho$) of $7.3{\times}10^{-4}{\Omega}{\cdot}cm$ was achieved when ITO power was 100 W. Effects of $H_2$ incorporation on the electrical and optical properties of AZO-ITO films were investigated in this work. Addition of small amount of hydrogen resulted in the increase of carrier concentration and the improvement of electrical conductivity. It is apparent that the roughness of AZO-ITO films decreases dramatically after the transition of microstructure from polycrystalline to amorphous phase, which gives practical advantages such as an excellent uniformity of surface and a high etching rate. AZO-ITO films grown at sputtering ambient with hydrogen gas are expected to be applicable to optoelectronic devices such as organic light emitting diodes and flexible displays due to their sufficient electrical and structural properties.

RF/DC 스퍼티 성장한 ITO/Ag/ITO 투명전극 박막의 특성 연구 (Characterisitics of RF/DC Sputter Grown-ITO/Ag/ITO Thin Films for Transparent Conducting Electrode)

  • 이영재;김제하
    • Current Photovoltaic Research
    • /
    • 제10권1호
    • /
    • pp.28-32
    • /
    • 2022
  • We investigated the optical and electrical characteristics of ITO/Ag/ITO (IAI) 3-layer thin films prepared by using RF/DC sputtering. To measure the thickness of all thin film samples, we used scanning electron microscopy. As a function of Ag thickness we characterized the optical transmittance and sheet resistance of the IAI samples by using UV-Visible spectroscopy and Hall measurement system, respectively. While the thickness of both ITO thin films in the 3-layered IAI samples were fixed at 50 nm, we varied Ag layer thickness in the range of 0 nm to 11 nm. The optical transmittance and sheet resistance of the 3-layered IAI thin films were found to vary strongly with the thickness of Ag film in the ITO (50 nm)/Ag(t0)/ITO (50 nm) thin film. For the best transparent conducting oxide (TCO) electrode, we obtained a 3-layered ITO (50 nm)/Ag (t0 = 8.5 nm)/ITO (50 nm) that showed an avrage optical transmittance, AVT = 90.12% in the visible light region of 380 nm to 780 nm and the sheet resistance, R = 7.24 Ω/□.

플렉서블 디스플레이용 투명전극 제조를 위한 ITO 대체소재 연구동향

  • 김선옥;최수빈;김종웅
    • 세라미스트
    • /
    • 제21권1호
    • /
    • pp.12-23
    • /
    • 2018
  • As the flexible displays have been considered as a breakthrough to make a new electronics category, transparent electrodes have also confronted with an emerging issue, i.e., they also need to be mechanically flexible. For this to be made possible, a transparent electrode capable of withstanding large amounts of strain must be developed. Indium tin oxide (ITO) has been one of the most widely adopted transparent electrodes for displays and other transparent electronics, mainly supported by its high electrical conductivity and optical transparency. However, its brittle nature has forced the display industry to search for other alternatives. Recently, advances in nano-material researches have opened the door for various transparent conductive materials, which include carbon nanotube, graphene, Ag and Cu nanowire, and printable metal grids. Here we reviewed recently-published research works introducing flexible displays, all of which are employing the novel candidates for a conducting material.