플렉서블 디스플레이용 투명전극 제조를 위한 ITO 대체소재 연구동향

  • 김선옥 (전북대학교 신소재공학부 정보소재공학전공) ;
  • 최수빈 (전북대학교 신소재공학부 정보소재공학전공) ;
  • 김종웅 (전북대학교 신소재공학부 정보소재공학전공)
  • Published : 2018.03.31

Abstract

As the flexible displays have been considered as a breakthrough to make a new electronics category, transparent electrodes have also confronted with an emerging issue, i.e., they also need to be mechanically flexible. For this to be made possible, a transparent electrode capable of withstanding large amounts of strain must be developed. Indium tin oxide (ITO) has been one of the most widely adopted transparent electrodes for displays and other transparent electronics, mainly supported by its high electrical conductivity and optical transparency. However, its brittle nature has forced the display industry to search for other alternatives. Recently, advances in nano-material researches have opened the door for various transparent conductive materials, which include carbon nanotube, graphene, Ag and Cu nanowire, and printable metal grids. Here we reviewed recently-published research works introducing flexible displays, all of which are employing the novel candidates for a conducting material.

Keywords

References

  1. S. Liu, J. Yue, A. Gedanken, "Synthesis of long silver nanowires from AgBr nanocrystals," Adv. Mater., 13 656-658 (2001). https://doi.org/10.1002/1521-4095(200105)13:9<656::AID-ADMA656>3.0.CO;2-O
  2. N. Komoda, M. Nogi, K. Suganuma, K. Kohno, Y. Akiyama, K. Otsuka, "Printed silver nanowire antennas with low signal loss at high-frequency radio," Nanoscale, 4 3148-3153 (2012). https://doi.org/10.1039/c2nr30485f
  3. D.S. Hecht, L. Hu, G. Irvin, "Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures," Adv. Mater., 23 1482-1513 (2011). https://doi.org/10.1002/adma.201003188
  4. L. Hu, H. Wu, Y. Cui, "Metal nanogrids, nanowires, and nanofibers for transparent electrodes," MRS Bull., 36 760-765 (2011). https://doi.org/10.1557/mrs.2011.234
  5. T. Kim, Y.W. Kim, H.S. Lee, H. Kim, W.S. Yang, K.S. Suh, "Uniformly interconnected silver-nanowire networks for transparent film heaters," Adv. Funct. Mater., 23 1250-1255 (2013). https://doi.org/10.1002/adfm.201202013
  6. Y. Kim, T. I. Ryu, K. Ok, M. Kwak, S. Park, N. Park, C. J. Han, B. S. Kim, M. J. Ko, H. J. Son and J. Kim, "Inverted Layer-By-Layer Fabrication of an Ultraflexible and Transparent Ag Nanowire/ Conductive Polymer Composite Electrode for Use in High-Performance Organic Solar Cells," Adv. Funct. Mater., 25 4580-4589 (2015). https://doi.org/10.1002/adfm.201501046
  7. H. M. Nam, D. M. Seo, H. D. Yun, G. Thangavel, L. S. Park, S. Y. Nam, "Transparent Conducting Film Fabricated by Metal Mesh Method with Ag and Cu@ Ag Mixture Nanoparticle Pastes," Metals, 7 176 (2017). https://doi.org/10.3390/met7050176
  8. X. Chen, W. Guo, L. Xie, C. Wei, J. Zhuang, W. Su, Z. Cui, "Embedded Ag/Ni Metal-Mesh with Low Surface Roughness As Transparent Conductive Electrode for Optoelectronic Applications," ACS Appl. Mater. Interfaces, 9 37048-37054 (2017). https://doi.org/10.1021/acsami.7b11779
  9. C. Song, K. Ok, C. Lee, Y. Kim, M. Kwak, C. J. Han, N. Kim, B. Ju, J. Kim, "Intense-pulsed-light irradiation of Ag nanowire-based transparent electrodes for use in flexible organic light emitting diodes," Organic Electronics, 17 208-215 (2015). https://doi.org/10.1016/j.orgel.2014.12.015
  10. K. Ok, J. Kim, S. Park, Y. Kim, C. Lee, S. Hong, M. Kwak, N. Kim, C. J. Han, J. Kim, "Ultra-thin and smooth transparent electrode for flexible and leakage-free organic light-emitting diodes," Sci. Rep., 5 9464 (2015). https://doi.org/10.1038/srep09464
  11. J. Lee, K. An, P. Won, Y. Ka, H. Hwang, H. Moon, Y. Kwon, S. Hong, C. Kim, C. Lee, S. H. Ko, "A dual-scale metal nanowire network transparent conductor for highly efficient and flexible organic light emitting diodes," Nanoscale, 9 1978-1985 (2017). https://doi.org/10.1039/C6NR09902E
  12. B. You, C. J. Han, Y. Kim, B. Ju, J. Kim, "A wearable piezocapacitive pressure sensor with a single layer of silver nanowire-based elastomeric composite electrodes," J. Mater. Chem. A,4 10435-10443 (2016). https://doi.org/10.1039/C6TA02449A
  13. S. Lee, A. Reuveny, J. Reeder, S. Lee, H. Jin, Q. Liu, T. Yokota, T. Sekitani, T. Isoyama, Y. Abe, Z. Suo, T. Someya, "A transparent bending-insensitive pressure sensor," Nature Nanotech., 11 472-478 (2016). https://doi.org/10.1038/nnano.2015.324
  14. M. Kang, J. Kim, B. Jang, Y. Chae, J. Kim, J. Ahn, "Graphene-Based Three-Dimensional Capacitive Touch Sensor for Wearable Electronics," ACS Nano, 11 7950-7957 (2017). https://doi.org/10.1021/acsnano.7b02474
  15. T. Wu, C. Yeh, W. Hsiao, P. Huang, M. Huang, Y. Chiang, C. Cheng, R. Liu, P. Chiu, "High-Performance Organic Light-Emitting Diode with Substitutionally Boron-Doped Graphene Anode," ACS Appl. Mater. Interfaces, 9 14998-15004 (2017). https://doi.org/10.1021/acsami.7b03597
  16. I. Park, T. Kim, T. Yoon, S. Kang, H. Cho, N. S. Cho, J. Lee, T. Kim, S. Choi, "Flexible and Transparent Graphene Electrode Architecture with Selective Defect Decoration for Organic Light-Emitting Diodes," Adv. Funct. Mater., 1704435 (2018).
  17. L. Kinner, S. Nau, K. Popovic, S. Sax, I. Burgues-Ceballos, F. Hermerschmidt, A. Lange, C. Boeffel, S. A. Choulis, E. J. W. List-Kratochvil, "Inkjet-printed embedded Ag-PEDOT:PSS electrodes with improved light out coupling effects for highly efficient ITO-free blue polymer light emitting diodes," Appl. Phys. Lett., 110, 101107 (2017). https://doi.org/10.1063/1.4978429