• Title/Summary/Keyword: Transonic airfoil

Search Result 58, Processing Time 0.021 seconds

Prediction of Transonic Buffet Onset for a Supercritical Airfoil with Shock-Boundary Layer Interactions Using Navier-Stokes Solver

  • Chung, Injae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • To predict the transonic buffet onset for a supercritical airfoil with shock-boundary layer interactions, a practical steady approach has been proposed. In this study, it is assumed that the airfoil flow is steady even when buffet onset occurs. Steady Navier-Stokes computations are performed on the supercritical airfoil. Using the aerodynamic parameters calculated from Navier-Stokes solver, various steady approaches for predicting buffet onset are discussed. Among the various steady approaches considered in this study, Thomas' criterion based on Navier-Stokes computation has shown to be the most appropriate indicator of identifying the buffet onset for a supercritical airfoil with shock-boundary layer interactions. Good agreements have been obtained compared with the results of unsteady transonic wind tunnel tests. The present method is shown to be reliable and useful for transonic buffet onset for a supercritical airfoil with shock-boundary layer interactions in terms of practical engineering viewpoint.

Subsonic/Transonic Airfoil Design Using an Inverse Method (Inverse 기법을 이용한 아음속/천음속 익형 설계)

  • Lee Jae Woo;Lee Young-Ki;Byun Yung-Hwan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.61-66
    • /
    • 1998
  • An inverse method for the subsonic and transonic airfoil design was developed using the Euler equations. Two testcases were performed. One was a design of the supercritical airfoil, aiming to be used for the Korean mid-sized (100 passengers class) transport aircraft. The other was the design of an airfoil showing a good cruising performance (L/D ratio) in the high subsonic/transonic flow regimes. These testcases demonstrated the efficiency and the robustness of the developed method.

  • PDF

Aerodynamic performance of Modified Sonic Arc Airfoil (수정 Sonic Arc 익형의 공력성능)

  • Lee, Jang-Chang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.581-585
    • /
    • 2007
  • Sonic arc airfoil derived from the TSD theory is modified to new airfoil shape and its aerodynamic performance in transonic flow is investigated. The numerical simulation using Euler equations for the modified sonic arc airfoil is performed. The numerical results are compared with the aerodynamic performance of NACA0012 airfoil, of supercritical airfoil, and of NACA64A210 airfoil. In the same free stream Mach number of transonic flow, the pressure drag of the modified sonic arc airfoil is smaller than that of NACA0012 airfoil and the lift-drag ratio of the modified sonic arc airfoil is much larger than that of NACA0012 airfoil. In the comparison of the drag-divergence Mach number of transonic flow, the drag-divergence Mach number of the modified sonic arc airfoil is larger than that of NACA64A210 airfoil but is smaller than that of supercritical airfoil.

Visualization of Transonic Airfoil Flows in a Shock Tube (충격파관 내 천음속 익형 유동의 가시화)

  • Jang Ho-Keun;Kwon Jin-Kyung;Kim Byung-Ji;Kwon Soon-Bum;Kim Myung-Su
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.68-71
    • /
    • 2004
  • The experiments for NACA airfoils are conducted as the preliminary study for the aerodynamic characteristics of the transonic airfoil flow in the shock tube. The test section configurations were designed to use shock tube as simple and less costly experimental facility generating transonic flow at relatively high Reynolds numbers. Experiments at hot gas Mach numbers of 0.80, 0.82 and 0.84, Reynolds numbers of about $1.2\times10^6$ on airfoil chord length and angle of attack of $0^{\circ}\;and\;2^{\circ}$ were carried out by means of shadowgraph visualization method and static pressure measurements. Visualization results were compared with the corresponding results from the conventional transonic wind tunnel tests. The results of study showed that present shock tube facility is useful to study the proper performance characteristics in transonic Mach number range.

  • PDF

Aerodynamic Performance Improvement by Divergent Trailing Edge Modification to a Supercritical Airfoil

  • Yoo, Neung-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.10
    • /
    • pp.1434-1441
    • /
    • 2001
  • A computational study has been performed to determine the effects of divergent trailing edge (DTE) modification to a supercritical airfoil in transonic flow field. For this, the computational result with the original DLBA 186 supercritical airfoil was compared to that of the modified DLBA 283. A wavier-Stokes code, Fluent 5. 1, was used with Spalart-Allmaras's one-equation turbulence model. Results in this study showed that the reduction in drag due to the DTE modification is associated with weakened shock and delayed shock appearance. The decrease in drag due to the DTE modification is greater than the increase in base drag. The effect of the recirculating flow region on lift increase was also observed. An airfoil with DTE modification achieved the same lift coefficient at a lower angle of attack while giving a lower drag coefficient. Thus, the lift-to-drag ratio increases in transonic flow conditions compared to the original airfoil. The lift coefficient increases considerably whereas the lift slope increases just a little due to DTE modification.

  • PDF

Optimization of Transonic Airfoil Using GA Based on Neural Network and Multiple Regression Model (유전 알고리듬과 반응표면을 이용한 천음속 익형의 최적설계)

  • Kim, Yun-Sik;Kim, Jong-Hun;Lee, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2556-2564
    • /
    • 2002
  • The design of airfoil had practiced by repeat tests in its first stage, though an airfoil has as been designed based on simulations according to techniques of computational fluid dynamics. Here, using of traditional optimization is unsuitable because a state of flux is hypersensitive to the shape of airfoil. Therefore the paper optimized the shape of airfoil in transonic region using a genetic algorithm (GA). Response surfaces are based on back propagation neural network (BPN) and regression model. Training data of BPN and regression model were obtained by computational fluid dynamic analysis using CFD-ACE, and each analysis has been designed by design of experiments.

Design Optimization of Transonic Airfoils Based on the Navier-Stokes Equation (Navier-Stokes 방정식을 이용한 천음속 익형의 설계최적화 연구)

  • Lee Hyeong Min;Jo Chang Yeol
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.177-185
    • /
    • 1999
  • The airfoil design optimization procedures based on the Navier-Stokes equations were developed, This procedure enables more realistic and practical transonic airfoil designs. The modified Hicks-Henne functions were used to generate the shape of airfoils. Five Hick-Henne functions were used to design upper surface of airfoil only. To enhance the ability of Hick-Henne function to generate various airfoil shape with limited number of functions, the positions of control points were adjusted through optimization procedure. The design procedure was applied to the single-point design for the drag minimization problem with lift and area constraints. The result shows the capability of the procedure to generate much realistic airfoils with very small drag-creep in the low transonic regime. This is mainly due to the viscosity effect of Navier-Stokes flow analysis. However, in the higher transonic range tile drag-creep appears. The multi-point design is shown to be an effective way to avoid the drag-creep and improve off-design performance which is very similar in the Euler design.

  • PDF

THE EFFECTS OF MACH NUMBER AND THICKNESS RATIO OF AIRFOIL ON TRANSONIC FLOW OF MOIST AIR AROUND A THIN AIRFOIL WITH LATENT HEAT TRANSFER (잠열 전달이 일어나는 얇은 익형주위의 천음속 습공기 유동에서의 마하수와 익형 두께비의 영향)

  • Lee, J.C.
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.93-102
    • /
    • 2012
  • Once the condensation of water vapor in moist air around a thin airfoil occurs, liquid droplets nucleate. The condensation process releases heat to the surrounding gaseous components of moist air and significantly affects their thermodynamic and flow properties. As a results, variations in the aerodynamic performance of airfoils can be found. In the present work, the effects of upstream Mach number and thickness ratio of airfoil on the transonic flow of moist air around a thin airfoil are investigated by numerical analysis. The results shows that a significant condensation occurs as the upstream Mach number is increased at the fixed thickness ratio of airfoil($\epsilon$=0.12) and as the thickness ratio of airfoil is increased at the fixed upstream Mach number($M_{\infty}$=0.80). The condensate mass fraction is also increased and dispersed widely around an airfoil as the upstream Mach number and thickness ratio of airfoil are increased. The position of shock wave for moist air flow move toward the leading edge of airfoil when it is compared with the position of shock wave for dry air.

An Experimental Study on Transonic Airfoil Flows in a Shock Tube (충격파관 내 천음속 날개 유동에 관한 실험적 연구)

  • Lee, Dong-Won;Gwon, Sun-Beom;;Kim, Byeong-Ji;Kim, Tae-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.11-16
    • /
    • 2006
  • An experimental study of the transonic flows over NACA and double wedge airfoils was conducted with a shock tube. The configuration of test section with a slotted wall and chamber was designed and tested to minimize wall and reflected shock wave effects and use the shock tube as simple and less costly wind tunnel generating the relatively high Reynolds numbers transonic flow. Transonic airfoil flows at hot gas Mach numbers of 0.80~0.84, Reynolds number of about $1.2{\times}10^6$ on airfoil chord length and angles of attack of $0^{\circ}$ and $2^{\circ}$ were visualized with the shadowgraph method. The shock wave profiles on the airfoils were compared with the corresponding results from the conventional transonic wind tunnel tests. The experimental results showed that present shock tube exhibited the proper performance characteristics as transonic wind tunnel for tested Mach number range and airfoils.

Subsonic/Transonic Airfoil Design Using an Inverse Method (Inverse 기법을 이용한 아음속/천음속 익형 설계)

  • Lee Young-Ki;Lee Jae-Woo;Byun Yung-Hwan
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.46-53
    • /
    • 1998
  • An inverse method for the subsonic and transonic airfoil design was developed using the Euler equations. Two testcases were performed. One was a verification of the method using the supercritical airfoil of the Korean mid-sized (100 passengers class) transport aircraft. The other was the design of an airfoil showing a good cruising performance (L/D ratio) in the high subsonic flow regime. These testcases demonstrated the efficiency and the robustness of the design method in the present study.

  • PDF