DOI QR코드

DOI QR Code

Aerodynamic performance of Modified Sonic Arc Airfoil

수정 Sonic Arc 익형의 공력성능

  • Published : 2007.07.31

Abstract

Sonic arc airfoil derived from the TSD theory is modified to new airfoil shape and its aerodynamic performance in transonic flow is investigated. The numerical simulation using Euler equations for the modified sonic arc airfoil is performed. The numerical results are compared with the aerodynamic performance of NACA0012 airfoil, of supercritical airfoil, and of NACA64A210 airfoil. In the same free stream Mach number of transonic flow, the pressure drag of the modified sonic arc airfoil is smaller than that of NACA0012 airfoil and the lift-drag ratio of the modified sonic arc airfoil is much larger than that of NACA0012 airfoil. In the comparison of the drag-divergence Mach number of transonic flow, the drag-divergence Mach number of the modified sonic arc airfoil is larger than that of NACA64A210 airfoil but is smaller than that of supercritical airfoil.

TSD 이론으로 구해진 sonic arc 익형의 형상을 새로운 익형 형상으로 수정하고 천음속 유동에서의 공력 성능을 조사하였다. Euler solver를 이용하여 수정 sonic arc 익형에 대한 수치계산을 수행하고 그 결과를 NACA0012 익형의 공력 성능과 초임계 익형의 공력 성능 그리고 NACA64A210 익형의 공력성능과 비교하였다. 천음속 유동의 같은 자유 유동 마하수에서 수정 sonic arc 익형의 압력 항력은 NACA0012 익형의 압력 항력보다 더 작게 나타났으며 수정 sonic arc 익형의 양항비는 NACA0012 익형의 양항비보다 훨씬 크게 나타났다. 천음속 유동에서의 항력 발산 마하수 비교에서는 수정 sonic arc 익형의 항력 발산 마하수가 NACA64A210 익형의 항력 발산 마하수보다는 크게 나타났지만 초임계 익형의 항력 발산 마하수 보다는 작게 나타났다.

Keywords

References

  1. Nixon, D., 'Unsteady Transonic Aerodynamics', AIAA Progress in Astronautics and Aeronautics, Vol. 120, 1988
  2. Murrnan, E. M., and Cole J. D., 'Calculation of Plane Study Transonic Flows', AIAA Journal, Vol. 9, N0.1, pp. 114-121, 1971 https://doi.org/10.2514/3.6131
  3. Hafes, E. M., South, J., and Murman, E., 'Artificial Compressibility Methods for Numerical Solutions of Transonic Full Potential Equation', AIAA Journal, Vol. 17, No.8, pp. 1737-1743, 1979
  4. Jameson, A. and Yoon, S., 'Multigrid Solution of the Euler Equations Using Implicit Schemes', AIAA Journal, Vol. 24, No. 11, pp.1737-1743, 1986 https://doi.org/10.2514/3.9518
  5. Webster, B. E., Shephard, M. S., Rusak, Z., and Flaherty, J., 'An Automated Adaptive Time Discontinuous Finite Element Method for Unsteady Compressible Airfoil Aerodynamics', AIAA Journal, Vol. 32, No.4, pp. 748-757, 1994 https://doi.org/10.2514/3.12049
  6. Cole, J. D., Malmuth, N., and Wu, C. C., 'Transonic Wave Drag Estimation and Optimization Using the Nonlinear Area Rule'
  7. Cole, J. D. and Cook, L. P., Transonic Aerodynamics, North-Holland, 1986
  8. Schwendenman, D. W., Kropinski, M. C. A, and Cole, J. D., 'On the Construction and Calculation of Optimal Nonlifting Critical Airfoils', Z. Angew. Math. Phys., Vol. 44, pp. 556-571, 1993 https://doi.org/10.1007/BF00953667
  9. Whitcomb, R. T. and Clark, L. R, 'An Airfoil Shape for Efficient Flight at Supercritical Mach Numbers', NASA TM X-1109, 1965
  10. Roos, F. W. and Riddle, D. W., 'Measurements of Surface-Pressure and Wake-Flow Fluctuations in the Flow Field of a Whitcomb Supercritical Airfoil', NASA TN D-8443, 1977
  11. Spaid, F. W., Dahlin, J. A, Roos, F. W., and Stivers, L. S., Jr., 'An Experimental Study of Transonic Flow about a Supercritical Airfoil. Static Pressure and Drag data Obtained from Tests of a Supercritical Airfoil and an NACA0012 Airfoil at Transonic Speeds, Supplement', NASA-TM-81336-SUPPL, 1983
  12. Anderson, J. D. Jr., Introduction to Flight, 4th Ed., McGraw-Hill, pp. 227-344, 2000
  13. Abbott, I. H. and von Doenhoff, A. E., Theory of Wing Sections, Dover Publications Inc. New York, 1959

Cited by

  1. Study on the Design of High Speed Airfoil using the Geometric Interpolation and Optimization vol.40, pp.4, 2012, https://doi.org/10.5139/JKSAS.2012.40.4.273
  2. Low Speed Thrust Characteristics of a Modified Sonic Arc Airfoil Rotor through Spin Test Measurement vol.13, pp.3, 2012, https://doi.org/10.5139/IJASS.2012.13.3.317