• Title/Summary/Keyword: Transonic

Search Result 282, Processing Time 0.026 seconds

Transonic Flutter Suppression of the 2-D Flap Wing with External Store using CFD-based Aeroservoelasticity

  • Lee, Seung-Jun;Lee, In;Han, Jae-Hung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.121-127
    • /
    • 2006
  • An analysis procedure for the combined problem of control algorithm and aeroelastic system which is based on the computational fluid dynamics(CFD) technique has been developed. The aerodynamic forces in the transonic region are calculated from the transonic small disturbance(TSD) theory. An linear quadratic regulator(LQR) controller is designed to suppress the transonic flutter. The optimal control gain is estimated by solving the discrete-time Riccati equation. The system identification technique rebuilds the CFD-based aeroelstic system in order to form an adequate system matrix which involved in the discrete-time Riccati equation. Finally the controller, that is constructed on the basis of system identification technique, is used to suppress the flutter phenomenon of the airfoil with attached store. This approach, that is, the CFD-based aeroservoelasticity design, can be utilized for the development of effective flutter controller design in the transonic region.

Visualization of Transonic Airfoil Flows in a Shock Tube (충격파관 내 천음속 익형 유동의 가시화)

  • Jang Ho-Keun;Kwon Jin-Kyung;Kim Byung-Ji;Kwon Soon-Bum;Kim Myung-Su
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.68-71
    • /
    • 2004
  • The experiments for NACA airfoils are conducted as the preliminary study for the aerodynamic characteristics of the transonic airfoil flow in the shock tube. The test section configurations were designed to use shock tube as simple and less costly experimental facility generating transonic flow at relatively high Reynolds numbers. Experiments at hot gas Mach numbers of 0.80, 0.82 and 0.84, Reynolds numbers of about $1.2\times10^6$ on airfoil chord length and angle of attack of $0^{\circ}\;and\;2^{\circ}$ were carried out by means of shadowgraph visualization method and static pressure measurements. Visualization results were compared with the corresponding results from the conventional transonic wind tunnel tests. The results of study showed that present shock tube facility is useful to study the proper performance characteristics in transonic Mach number range.

  • PDF

Transonic characteristics for AGARD Wing 445.6 by numerical simulation

  • Ye, Wenjuan;Lee, Young-Shin;Lan, Jinhai
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.331-334
    • /
    • 2010
  • The supersonic speeds slowing down by shock waves is a common problem during the transonic region. So how to study the status of shock on the surface of airplane and wings is crucial adjective during transonic region. However, the theoretical and computational transonic flow problems were very hard. This paper introduced using Navier-Stokes Schemes to study characteristics of AGARD Wing 445.6 by ANSYS CFX in transonic region. From simulations results, as the Mach number increases, shock waves appear in the flowfield, getting stronger as the speed increases, these shock waves will lead to a rapid increase in drag.

  • PDF

UNSTEADY AERODYNAMIC ANALISES OF SPACE ROCKET CONFIGURATION CONSIDERING PITCHING MOTION (피칭운동을 고려한 우주발사체 형상의 천음속 비정상 유동해석)

  • Kim, D.H.;Kim, Y.H.;Kim, D.H.;Yoon, S.H.;Kim, G.S.;Jang, Y.H.;Kim, S.H.
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.53-59
    • /
    • 2011
  • In this study, steady and unsteady aerodynamic analyses of a huge rocket configuration have been conducted in a transonic flow region. The launch vehicle structural response are coupled with the transonic flow state transitions at the nose of the payload fairing. Before performing the coupled fluid-structure transonic aeroealstic simulations transonic aerodynamic characteristics are investigated for the pitching motions of the rocket at finite angle-of-attack. An unsteady CFD analysis method with a moving grid technique based on the Reynolds-averaged Navier-Stokes equations with the k-w SST transition turbulence model is applied to accurately predict the transonic loads of the rocket at pitching motion. It is shown that the fluctuating amplitude of the lateral aerodynamic loads imposed on the rocket due to the pitching motion can be significantly increased in the transonic flow region.

SEMI-HYPERBOLIC PATCHES ARISING FROM A TRANSONIC SHOCK IN SIMPLE WAVES INTERACTION

  • Song, Kyungwoo
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.945-957
    • /
    • 2013
  • In this paper we consider a Riemann problem, in particular, the case of the presence of the semi-hyperbolic patches arising from a transonic shock in simple waves interaction. Under this circumstance, we construct global solutions of the two-dimensional Riemann problem of the pressure gradient system. We approach the problem as a Goursat boundary value problem and a mixed initial-boundary value problem, where one of the boundaries is the transonic shock.

Tip Leakage Flow on the Transonic Compressor Rotor (천음속 회전익에서의 누설유동)

  • Park, JunYoung;Chung, HeeTaeg;Baek, JeHyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.244-249
    • /
    • 2002
  • It is known that tip clearance flows reduce the pressure rin, flow range and efficiency of the turbomachinery. So, the clear understanding about flow fields in the tip region is needed to efficiently design the turbomachinery. The Navier-Stokes code with the proper treatment of the boundary conditions has been developed to analyze the three-dimensional steady viscous flow fields in the transonic rotating blades and a numerical study has been conducted to investigate the detail flow physics in the tip region of transonic rotor, NASA Rotor 67. The computational results in the tip region of transonic rotors show the leakage vortices, leakage flow from pressure side to suction side and their interaction with a shock Depending on the operating conditions, the position of shock-wave on the blade surface are v8y different close to the blade tip of the transonic compressor rotor. The shock-wave position dose to the blade tip had the dose relationship with the starting position of leakage vortex and the direction of leakage flow.

  • PDF

A Study of Transonic Combustion in a Diverging Channel Using Asymptotic Analysis (점근해석을 이용한 확대형 채널 내의 천음속 연소에 관한 연구)

  • Lee, Jang-Chang
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1604-1610
    • /
    • 2004
  • A steady dilute premixed combustion at transonic speeds in a diverging channel is investigated. The model explores the nonlinear interactions between the near-sonic speed of the flow, the small changes in geometry from a straight channel, and the small heat release due to the one-step first-order Arrhenius chemical reaction. The reactive flow can be described by a nonhomogeneous transonic small-disturbance (TSD) equation coupled with an ordinary differencial equation for the calculation of the reactant mass fraction in the combustible gas. The asymptotic analysis results in the similarity parameters that govern the reacting flow problem. The model is used to study transonic combustion at various amounts of incoming, reactant mass, reaction rates, and channel geometries.

  • PDF

Prediction of Transonic Buffet Onset for a Supercritical Airfoil with Shock-Boundary Layer Interactions Using Navier-Stokes Solver

  • Chung, Injae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • To predict the transonic buffet onset for a supercritical airfoil with shock-boundary layer interactions, a practical steady approach has been proposed. In this study, it is assumed that the airfoil flow is steady even when buffet onset occurs. Steady Navier-Stokes computations are performed on the supercritical airfoil. Using the aerodynamic parameters calculated from Navier-Stokes solver, various steady approaches for predicting buffet onset are discussed. Among the various steady approaches considered in this study, Thomas' criterion based on Navier-Stokes computation has shown to be the most appropriate indicator of identifying the buffet onset for a supercritical airfoil with shock-boundary layer interactions. Good agreements have been obtained compared with the results of unsteady transonic wind tunnel tests. The present method is shown to be reliable and useful for transonic buffet onset for a supercritical airfoil with shock-boundary layer interactions in terms of practical engineering viewpoint.

Transonic Aeroelastic Analysis of a Airfoil with Friction Damping (마찰 감쇠를 고려한 에어포일의 천음속 공탄석 해석)

  • Yoo, Jae-Han;Lee, In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1075-1080
    • /
    • 2010
  • For the aeroelastic analysis of a wing with friction damping, coupled time integration method was used to obtain time responses in the subsonic and transonic regions. To take into account aerodynamic nonlinearity induced by shock wave on the lifting surface, transonic small disturbance equation with in-phase periodic boundary condition was used for unsteady aerodynamic calculation. For 2-DOF airfoil system with displace-dependent friction dampers, the effects of normal load slope and Mach number on flutter boundary were investigated.

Transonic Aeroelastic Analyses of Wings Considering UViscous and Thickness Effects

  • Kim, Jong-Yun;Kim, Kyung-Seok;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.34-40
    • /
    • 2008
  • The aeroelastic analyses for several wing models were performed using the transonic small-disturbance (TSD) equation, which is very efficient, to consider the aerodynamic nonlinearities in the transonic region. For more accurate aerodynamic analysis of airfoil and wing models with shock waves, the viscous equations based on the Green's lag-entrainment equation of boundary-layer effects were coupled with the TSD equation in the transonic region. Finally the aeroelastic characteristics of wing models were investigated through comparisons of the aeroelastic analysis results for wing models considering the change of a thickness of the airfoil section. Moreover, the results of the aeroelastic analysis using the coupled TSD equation with the viscous equations were compared with those using the TSD equation for several wing models.