• Title/Summary/Keyword: Transmit

Search Result 3,661, Processing Time 0.028 seconds

On the Capacities of Spectrum-Sharing Systems with Transmit Diversity

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.99-103
    • /
    • 2010
  • Motivated by recent works on spectrum-sharing systems, this paper investigates the effects of transmit diversity on the peak interference power limited cognitive radio(CR) networks. In particular, we derive the ergodic and outage capacities of a spectrum-sharing system with multiple transmit-antennas. To derive the capacities, peak interference power constraint is imposed to protect the primary receiver. In a CR transmitter and receiver pair with multiple antennas at the transmitter side, the allowable transmit power is distributed over the transmit-antennas to achieve transmit diversity at the receiver. We investigate the effect of this power distribution when a peak interference power constraint is imposed to protect the primary receiver. We show that the transmit diversity does not improve the ergodic capacity compared to the single-antenna system. On the other hand, the transmit diversity significantly improves the outage capacity. For example, two transmit-antennas improve the outage capacity 10 times compared to the single-antenna with a 0 dB interference constraint.

Transmit Power and MMSE Receiver Filter Algorithm for Multi Access Points (다중 엑세스 포인트에서 전송전력과 MMSE 수신필터 알고리즘)

  • Oh, Changyoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.3
    • /
    • pp.111-118
    • /
    • 2020
  • We investigate the optimization problem of transmit power control and MMSE Receiver filter for multi access points environment. Previous work showed that increasing the number of access points decreases the transmit power consumption. Accordingly, transmit power control algorithm was developed in such a way that the transmit power is minimized, while each terminal meets Signal to Interference and Noise Ratio Requirement. In this work, we further reduce the transmit power consumption by optimizing the transmit power level and the MMSE receiver filter together. We showed that the proposed joint optimization algorithm satisfies the necessary and sufficient conditions to be standard interference function, which guarantees convergence and minimum transmit power consumption. We observed that the proposed algorithm outperforms the algorithm which only optimizes the transmit power.

Transmit Diversity Using Windowing Scheme in OFDM System (OFDM 시스템에서 윈도윙 기법을 이용한 송신 다이버시티)

  • Kim, Yong-June;Rim, Min-Joong;Lim, Dae-Woon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9A
    • /
    • pp.871-877
    • /
    • 2007
  • In this paper, we propose a new transmit diversity scheme using window functions in orthogonal frequency division multiplexing (OFDM) system. Transmit diversity of the scheme is varied with window functions and the condition of the window function to maximize transmit diversity is derived. The proposed scheme can be considered as a generalization of the diversity schemes such as cyclic delay diversity (CDD), orthogonal transmit diversity (OTD), and frequency switched transmit diversity (FSTD).

Performance Analysis of MRT-Based Dual-Polarized Massive MIMO System with Space-Polarization Division Multiple Access

  • Hong, Jun-Ki
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.4006-4020
    • /
    • 2018
  • In recent years, one of the most remarkable 5G technologies is massive multiple-input and multiple-output (MIMO) system which increases spectral efficiency by deploying a large number of transmit-antennas (eg. tens or hundreds transmit-antennas) at base station (BS). However, conventional massive MIMO system using single-polarized (SP) transmit-antennas increases the size of the transmit-array proportionally as the number of transmit-antennas increases. Hence, size reduction of large-scale transmit-array is one of the major concerns of massive MIMO system. To reduce the size of the transmit-array at BS, dual-polarized (DP) transmit-antenna can be the solution to halve the size of the transmit-array since one collocated DP transmit-antenna deploys vertical and horizontal transmit-antennas compared to SP transmit-antennas. Moreover, proposed DP massive MIMO system increases the spectral efficiency by not only in the space domain but also in the polarization domain whereas the conventional SP massive MIMO system increases the spectral efficiency by space domain only. In this paper, the comparative performance of DP and SP massive MIMO systems is analyzed by space division multiple access (SDMA) and space-polarization division multiple access (SPDMA) respectively. To analyze the performance of DP and SP massive MIMO systems, DP and SP spatial channel models (SCMs) are proposed which consider depolarized propagation channels between transmitter and receiver. The simulation results show that the performance of proposed 32 transmitter (Tx) DP massive MIMO system improves the spectral efficiency by about 91% for a large number of user equipments (UEs) compare to 32Tx SP massive MIMO system for identical size of the transmit-array.

Asymptotic Performance Analysis of Free-Space Optical Links with Transmit Diversity

  • Feng, Jianfeng;Zhao, Xiaohui
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.451-463
    • /
    • 2016
  • The misalignment errors and fluctuations in irradiance due to atmospheric turbulence can severely degrade the performance of free-space optical (FSO) systems. In this paper, we investigate the asymptotic bit error rate (BER) performance and diversity orders of FSO links using parallel transmit-diversity schemes. The BER expressions of FSO links with the switch-and-examine transmit (SET), switch-and-examine transmit with post-selection (SETps), dual-branch transmit laser selection (Dual-TLS), and group transmit laser selection (Group-TLS) schemes are derived, based on an approximate channel model. Then numerical simulations for these four schemes in the region of high average signal-to-noise ratio (SNR) are presented under different channel conditions. The results show that the four transmit-diversity schemes can reduce system complexity and overcome the limitation of peak power, without much BER deterioration.

A Novel Data Transmit Method Using Display Units of Mobile Devices (모바일 단말기의 디스플레이 장치를 이용한 새로운 데이터 전송방법)

  • Shin, Ho-Chul;Cho, Kyu-Min;Oh, Won-Seok;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.193-195
    • /
    • 2004
  • This paper presents a novel data transmit method using display units of mobile devices. Mobile devices such as personal-digital-assistants (PDAs) and cellular phones have a display unit. The typical display unit is a liquid-crystal-display (LCD) with an back-light. Since the proposed data transmit method uses the LCD or back-light as a data transmitter, it is a kind of sightable light communication. Tn order to transmit the data, the display unit drived by an application program on the platform of mobile devices. In this paper, detailed data transmit scheme, specific data protocol are presented and discussed. Finally, with the experimental results, usefulness of the proposed data transmit method is verified.

  • PDF

Transmit Antenna Selection for Quadrature Spatial Modulation Systems with Power Allocation

  • Kim, Sangchoon
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.98-108
    • /
    • 2020
  • We consider transmit antenna selection combined with power allocation for quadrature spatial modulation (QSM) systems to improve the error rate performance. The Euclidean distance-based joint optimization criterion is presented for transmit antenna selection and power allocation in QSM. It requires an exhaustive search and thus high computational complexity. Thus its reduced-complexity algorithm is proposed with a strategy of decoupling, which is employed to successively find transmit antennas and power allocation factors. First, transmit antennas are selected without considering power allocation. After selecting transmit antennas, power allocation factors are determined. Simulation results demonstrate considerable performance gains with lower complexity for transmit antenna selected QSM systems with power allocation, which can be achieved with limited rate feedback.

Performance analysis of precoding-aided differential spatial modulation systems with transmit antenna selection

  • Kim, Sangchoon
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.117-124
    • /
    • 2022
  • In this paper, the performance of precoding-aided differential spatial modulation (PDSM) systems with optimal transmit antenna subset (TAS) selection is examined analytically. The average bit error rate (ABER) performance of the optimal TAS selection-based PDSM systems using a zero-forcing (ZF) precoder is evaluated using theoretical upper bound and Monte Carlo simulations. Simulation results validate the analysis and demonstrate a performance penalty < 2.6 dB compared with precoding-aided spatial modulation (PSM) with optimal TAS selection. The performance analysis reveals a transmit diversity gain of (NT-NR+1) for the ZF-based PDSM (ZF-PDSM) systems that employ TAS selection with NT transmit antennas, NS selected transmit antennas, and NR receive antennas. It is also shown that reducing the number of activated transmit antennas via optimal TAS selection in the ZF-PDSM systems degrades ABER performance. In addition, the impacts of channel estimation errors on the performance of the ZF-PDSM system with TAS selection are evaluated, and the performance of this system is compared with that of ZF-based PSM with TAS selection.

On the Outage Behavior of Interference Temperature Limited CR-MISO Channel

  • Kong, Hyung-Yun;Asaduzzaman, Asaduzzaman
    • Journal of Communications and Networks
    • /
    • v.13 no.5
    • /
    • pp.456-462
    • /
    • 2011
  • This paper investigates the outage behavior of peak interference power limited cognitive radio (CR) networks with multiple transmit antennas. In CR-multi-input single-output (MISO) channel, the total transmit power is distributed over the transmitantennas. First, we use the orthogonal space-time codes (STC) to achieve the transmit diversity at CR-receiver (rx) and investigate the effect of the power distribution on the interference power received at the primary-receiver (P-rx). Then, we investigate the transmit antenna selection (TAS) scheme in which the CR system selects the best transmit antenna and allocates all the power to the selected best antenna. Two transmit antenna selection strategies are proposed depending on if feedback channel is available or not. We derive the closed form expressions of outage probability and outage capacity of all schemes with arbitrary number of transmit-antennas. We show that the proposed schemes significantly improve the outage capacity over the single antenna systems in Rayleigh fading environment. We also show that TAS based scheme outperforms the STC based scheme when peak interference power constraint is imposed on the P-rx only if a feedback channel from CR-rx to CR-transmitter is available.

Design of a simple closed-loop Transmit Diversity Scheme Using Sub-carrier Grouping for ECMA-392 Systems (ECMA-392 시스템을 위한 부 반송파 그룹핑 기반 폐루프 전송 다이버시티 기법 설계)

  • Joo, Jung Suk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.3-9
    • /
    • 2014
  • ECMA-392 is the first cognitive radio (CR) specification for personal/portable devices in TV white space. It supports two transmit antennas, for which only open-loop transmit diversity schemes are included. In this paper, we design a simple closed-loop transmit diversity scheme using sub-carrier grouping for ECMA-392 systems. First, sub-carrier grouping types suitable for ECMA-392 systems are described, and then a transmit antenna selection scheme is proposed. In order to reduce feedback information, decision on the transmit antenna selection in the given channel environments is made at the receiver side and the only index of the decided transmit antenna is sent to the transmit side. Through performance comparison to open-loop transmit diversity schemes of ECMA-392, it will be shown that with only a slight feedback overhead, the proposed scheme can improve receiver performance of ECMA-392 systems.