• 제목/요약/키워드: Transmission of Data

검색결과 6,318건 처리시간 0.035초

System Identification of Internet transmission rate control factors

  • Yoo, Sung-Goo;Kim, Young-Seok;Chong, Kil-To
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.652-657
    • /
    • 2004
  • As the real-time multimedia applications through Internet increase, the bandwidth available to TCP connections is oppressed by the UDP traffic, result in the performance of overall system is extremely deteriorated. Therefore, developing a new transmission protocol is necessary. The TCP-friendly algorithm is an example meeting this necessity. The TCP-friendly (TFRC) is an UDP-based protocol that controls the transmission rate based on the available round transmission time (RTT) and the packet loss rate (PLR). In the data transmission processing, transmission rate is determined based on the conditions of the previous transmission period. If the one-step ahead predicted values of the control factors are available, the performance will be improved significantly. This paper proposes a prediction model of transmission rate control factors that will be used for the transmission rate control, which improves the performance of the networks. The model developed through this research is predicting one-step ahead variables of RTT and PLR. A multiplayer perceptron neural network is used as the prediction model and Levenberg-Marquardt algorithm is used for the training. The values of RTT and PLR were collected using TFRC protocol in the real system. The obtained prediction model is validated using new data set and the results show that the obtained model predicts the factors accurately.

  • PDF

Retransmission with Transmission Quantity Allocation for Energy Harvesting Wireless Sensor Networks

  • Gun-Hee Kim;Ikjune Yoon
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권6호
    • /
    • pp.175-182
    • /
    • 2024
  • 무선 센서 네트워크에서는 배터리를 사용하여 수명이 제한적이고 싱크 주변에 데이터 전송이 많아 핫스팟 문제가 발생한다. 이를 해결하기 위해 자식 노드에게 데이터 수집량을 할당하여 전송량을 제한하는 방법을 사용한다. 그러나 이 방법은 싱크 노드에서 먼 노드의 에너지 남는 문제와 데이터 전송 오류 시 할당된 양만큼 전송되지 않는 문제가 존재한다. 본 논문에서는 이러한 문제를 해결하기 위해 부모 노드가 자식 노드에게 데이터 전송 양을 할당하여 전송량을 제한하는 환경에서, 재전송을 통한 오류 복구로 센서 데이터 손실을 방지하는 방법을 제안한다. 이때 각 센서 노드가 할당받은 데이터 전송량과 에너지의 한계를 넘지 않게 재전송량을 결정하고, 여분의 에너지로 오류를 복구하도록 한다. 시뮬레이션 결과, 제안된 기법이 데이터 전송 오류를 효과적으로 복구하여 데이터를 효율적으로 수집함을 확인했으며, 결과적으로 싱크 노드 및 주변 노드의 에너지 고갈을 최소화하고 데이터 수집률이 증가함을 알 수 있다.

포토닉스 기반 THz 근거리 전송 기술 (THz Short-range Transmission Technology Based on Photonics)

  • 조승현;문상록;이준기
    • 전자통신동향분석
    • /
    • 제34권6호
    • /
    • pp.61-70
    • /
    • 2019
  • Recently, research and development for next-generation mobile communication and short-range wireless communication has begun worldwide along with the provision of commercial services of 5G mobile communication technology. In response to this trend, the THz band has attracted considerable attention as a frequency band for transmitting 100 Gbps of large-capacity wireless data. For communication in the THz band, research and development of approaches based on photonics and electronics is being actively performed; the configurations, characteristics, and performances of these two methods for THz transmission have been seriously examined. Among them, we reviewed the technical issues in implementing THz wireless transmission technology using photonics technology. We also introduced the Electronic and Telecommunications Research Institute's (ETRI) development of photonics-based THz short-range transmission technology starting from 2019 and including some initial results. In the near future, 100 Gbps high-capacity wireless data transmission technology utilizing photonics technology is expected to be commercially available and applied to various applications, such as 3D hologram transmission, uncompressed large capacity medical data transmission, and multiple augmented reality/virtual reality (AR/VR).

Interference Aware Multipath Routing in Multi-rate Wireless Sensor Networks

  • Lee, Kang Gun;Park, Hyung Kun
    • 한국멀티미디어학회논문지
    • /
    • 제18권8호
    • /
    • pp.909-914
    • /
    • 2015
  • In wireless sensor networks, sensor nodes have a short transmission range and data is transferred from source to destination node using the multi-hop transmission. Sensor nodes are powered by battery and the link qualities are different, and the routing protocol in the wireless sensor network is one of the important technical issues. Multipath routing was proposed to reduce the data congestion and increase data throughput. In the multipath routing, however, each path can be interfered by the other path, and it can aggravate network performance. In this paper, we propose the multipath routing scheme for multi-rate wireless sensor networks. The multipath routing selects transmission paths to minimize transmission delay and path interference.

Trajectory-prediction based relay scheme for time-sensitive data communication in VANETs

  • Jin, Zilong;Xu, Yuxin;Zhang, Xiaorui;Wang, Jin;Zhang, Lejun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권8호
    • /
    • pp.3399-3419
    • /
    • 2020
  • In the Vehicular Ad-hoc Network (VANET), the data transmission of time-sensitive applications requires low latency, such as accident warnings, driving guidance, etc. However, frequent changes of topology in VANET will result in data transmission failures. In order to improve the efficiency of VANETs data transmission and increase the timeliness of data, this paper proposes a relay scheme based on Recurrent Neural Network (RNN) trajectory prediction, which can be used to select the optimal relay vehicle to transmit data. The proposed scheme learns vehicle trajectory in a distributed manner and calculates the predicted trajectory, and then the optimal vehicle can be selected to complete the data transmission, which ensures the timeliness of the data. Finally, we carry out a set of simulations to demonstrate the performance of the algorithm. Simulation results show that the proposed scheme enhances the timeliness of the data and the accuracy of the predicted driving trajectory.

특성 정보를 이용한 비디오 스트림의 효율적 전송 (On the efficient transmission of video stream using characteristic information)

  • 강수용;염헌영
    • 한국통신학회논문지
    • /
    • 제21권9호
    • /
    • pp.2328-2340
    • /
    • 1996
  • Until now, the transmission of data for VOD(Video on Demenad) was based on a real time modelling of video data. Markow Modulated Fluid Sources(MMFS) and Markow Modulated Poisson Sources(MMPS) are the most widely used modelling methods. But the charactersitics of the VBR(Variable Bit Rate) signal prevents modelling from actually being "real-time". Also these methods call for the use of large buffers for the abolishment of cell loss. These modelling methods are, of course, useful i case of teleconferences where a real time modelling of video traffic is inevitable, but they are insufficient in cases where the characteristic infomation of video traffic can be obtained beforehand-cases such as VOD. Video data is speial in that if one file is preprocessed all other products can simply be copied from that onepreprocessed file. This characteristic helps reduce the overhead arising from the job of drawing out characteristic information to almost zero. But still, compared to the existing real time modelling method data transmission using characteristic information succeeds in raising the efficiency of data transmission. In tis paper we will outline a method of dta transmission which use the characteristic information of each video stream, and evaluate this method through some experiments.periments.

  • PDF

USN의 전송 계층 프로토콜에서 에러 및 흐름제어의 성능 평가 (Analysis of Flow and Congestion control in USN)

  • 차현수;강철균;유승화;김기형
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 한국정보통신설비학회 2008년도 정보통신설비 학술대회
    • /
    • pp.45-50
    • /
    • 2008
  • Many applications of sensor network require connection to the Internet. The transmission protocol of traditional sensor network was designed within the sensor network itself. However, based on 6LoWPAN which can be accessed using IPv6, direct connection is possible between the sensor network and the TCP/IP network outside. Transmission of data in applications of sensor network falls into two main categories. One is a small packet that is periodically produced such as packet related to temperature and humidity. The other is a relatively large packet that brings about network overheads such as images. We investigated the conformance test and pros and cons of application data over the transmission protocol of Zigbee and 6LoWPAN. As a result, both Zigbee and 6LoWPAN have shown low rate of loss for periodic data and have in creased reliability of data transfer. When transmitting streaming image data, both ACK, non ACK mode of Zigbee and UDP of 6LoWPAN minimized transmission time but suffered the consequences of high packet loss. Even though TCP of 6LoWPAN required a long transmission time, we were able to confirm that no loss has occurred.

  • PDF

The Improvement of the Data Overlapping Phenomenon with Memory Accessing Mode

  • Yang, Jin-Wook;Woo, Doo-Hyung;Kim, Dong-Hwan;Yi, Jun-Sin
    • Journal of Information Display
    • /
    • 제9권1호
    • /
    • pp.6-13
    • /
    • 2008
  • Mobile phones use the embedded memory in LDI (LCD Driver IC). In memory accessing mode, data overlapping phenomenon can occur. These days, various contents such as DMB, Camera, Game are merged to phone. Accordingly, with more data transmission, there would be more data overlapping phenomenon in memory accessing mode. Human eyes perceive this data overlapping phenomenon as simply horizontal line noise. The cause of the data overlapping phenomenon was analysed in this paper. The data overlapping phenomenon can be changed by the speed of data transmission between the host and LDI. The optimum memory accessing position can be defined. This paper proposes a new algorithm for avoiding data overlapping.

Coding-based Storage Design for Continuous Data Collection in Wireless Sensor Networks

  • Zhan, Cheng;Xiao, Fuyuan
    • Journal of Communications and Networks
    • /
    • 제18권3호
    • /
    • pp.493-501
    • /
    • 2016
  • In-network storage is an effective technique for avoiding network congestion and reducing power consumption in continuous data collection in wireless sensor networks. In recent years, network coding based storage design has been proposed as a means to achieving ubiquitous access that permits any query to be satisfied by a few random (nearby) storage nodes. To maintain data consistency in continuous data collection applications, the readings of a sensor over time must be sent to the same set of storage nodes. In this paper, we present an efficient approach to updating data at storage nodes to maintain data consistency at the storage nodes without decoding out the old data and re-encoding with new data. We studied a transmission strategy that identifies a set of storage nodes for each source sensor that minimizes the transmission cost and achieves ubiquitous access by transmitting sparsely using the sparse matrix theory. We demonstrate that the problem of minimizing the cost of transmission with coding is NP-hard. We present an approximation algorithm based on regarding every storage node with memory size B as B tiny nodes that can store only one packet. We analyzed the approximation ratio of the proposed approximation solution, and compared the performance of the proposed coding approach with other coding schemes presented in the literature. The simulation results confirm that significant performance improvement can be achieved with the proposed transmission strategy.

TPC-BS: 센서 네트워크에서 이진검색 방법을 이용한 빠른 전송전력 결정 방법 (TPC-BS: Transmission Power Control based on Binary Search in the Wireless Sensor Networks)

  • 오승현
    • 한국멀티미디어학회논문지
    • /
    • 제14권11호
    • /
    • pp.1420-1430
    • /
    • 2011
  • 본 논문은 IEEE 802.15.4의 MAC 계층에서 노드간 거리와 환경에 따라 적절한 전송전력 값을 설정하여 무선 모뎀의 에너지 소비를 최적화하는 방법에 대하여 제안한다. 제안된 방법은 적절한 전송전력을 결정할 때 이진검색 기법으로 빠르게 최적의 전송전력을 찾을 수 있고, 다수의 메시지 전송에 따르는 오버헤드를 최소화할 수 있다. 결정된 전송전력은 데이터 패킷을 전송할 때 사용되고, 데이터-수신확인 패킷의 교환과정에서 전파환경에 따라 변경된 네트워크 품질에 따라 동적으로 수정된다. 시뮬레이션 실험결과 본 논문에서 제안하는 방법은 IEEE 802.15.4 표준에 비해 에너지 소비량은 30% 감소하고, 단위 에너지양에 의한 데이터 전송량은 2.5배 증가하는 결과를 보였다.