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Abstract 

 
In the Vehicular Ad-hoc Network (VANET), the data transmission of time-sensitive 
applications requires low latency, such as accident warnings, driving guidance, etc. However, 
frequent changes of topology in VANET will result in data transmission failures. In order to 
improve the efficiency of VANETs data transmission and increase the timeliness of data, this 
paper proposes a relay scheme based on Recurrent Neural Network (RNN) trajectory 
prediction, which can be used to select the optimal relay vehicle to transmit data. The proposed 
scheme learns vehicle trajectory in a distributed manner and calculates the predicted trajectory, 
and then the optimal vehicle can be selected to complete the data transmission, which ensures 
the timeliness of the data. Finally, we carry out a set of simulations to demonstrate the 
performance of the algorithm. Simulation results show that the proposed scheme enhances the 
timeliness of the data and the accuracy of the predicted driving trajectory. 
 
 
Keywords: Vehicular Ad-hoc Network, Optimal Relay Vehicle Selection, Recurrent Neural 
Network, Time-sensitive, Trajectory Prediction 
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1. Introduction 

The Vehicular Ad-hoc Network refers to an open mobile Ad-hoc network composed of 
vehicles, vehicles and infrastructures, vehicles and pedestrians communicating with each 
other in a traffic environment. The VANET combines wireless communication between 
vehicles and positioning technology into the vehicle's sensor assembly to provide 
over-the-horizon advance sensing, which benefits the safety of the driver and the surrounding 
environment, increases driving comfort and reduces environmental impact. Therefore, 
VANET plays a significant role in connecting vehicles to share important driving data in 
autonomous driving, making applications such as accident warning, assisted driving, road 
traffic information inquiry, inter-vehicle communication and Internet access services can be 
provided to vehicles. Autonomous driving technology is an essential part of the future vehicle, 
which enables vehicles to understand their driving conditions and road environment and 
respond to emergencies in time. These advantages often require the ability to exchange urgent 
data in time and relay it to the data center provides computing and scheduling services so that 
we can get help from it. In the VANET, vehicles communicate in a cooperative manner to 
facilitate communication between vehicles and base stations [1]. But due to the high-speed 
mobility of vehicles, network topologies often change [2], and this will cause communication 
delays for many new service platforms aimed at improving the quality of VANET 
transmissions. Therefore, autonomous driving also faces severe challenges, such as being 
unable to respond in time to unexpected speed changes and sudden changes in road conditions. 
However, existing communication protocols in VANETs are difficult to cope with 
communication requirements so far. With the rapid development of autonomous driving 
technology, reducing communication delay becomes a hot issue in VANET. The 
communication delay is usually caused by the unstable driving condition of the vehicle. 
Therefore, predicting vehicle trajectory in advance can effectively reduce communication 
delay. 

In VANET, all vehicles on a road follow traffic laws, thus the movement of a vehicle is 
predictable [3-5]. In addition, public transportation facilities, such as buses, metro, etc., all 
follow certain rules of driving. For example, the bus must arrive at a predetermined station at a 
certain time. Other commercial vehicles, such as taxis, buses, etc., pick up and drop off 
customers in a certain area. At the same time, the popularity of Global Positioning 
System(GPS) facilitates the collection of driving data. The movement pattern of these vehicles 
can be learned from these driving data, and it is good for choosing the appropriate relay 
vehicle to transmit data. At present, many researchers related to mobility prediction have been 
proposed. Some researchers presented predictive models, and others developed applications 
that predict vehicle mobility, which makes significant contributions to driving, safety, and 
vehicle communications [6-14]. In [6], the authors proposed an intuitive and effective regional 
transformation model to describe vehicle mobility between regions divided by urban 
intersections based on two urban vehicle trajectories. The model predicts the time a vehicle 
will arrive at a position, which helps to understand the traffic pressure in one area and provides 
a more time-saving route for other drivers. But the predicted limit value fluctuates too much 
and the accuracy fluctuates greatly. In [15-16], the work of mobility prediction in Mobile 
Ad-hoc Network(MANET) is discussed. Although more and more researchers focus on 
vehicle mobility prediction, few of them adopt machine learning to predict vehicle mobility. 
For the transmission of time-sensitive data in autonomous driving applications, there is a 
certain trade-off between computational overhead and communication efficiency. And in 
order to meet the two requirements at the same time, we can learn the driving history of the 
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vehicle which helps predict its driving trajectory and set an optimized communication 
strategy. 

Based on the above considerations, a relay vehicle selection algorithm is proposed in this 
paper, in which the most suitable vehicle to relay data can be selected. Firstly, we read 
historical data of vehicles including direction, speed, position, etc., to learn the driving pattern 
based on RNN. Secondly, the future trajectory of the vehicles is predicted. We choose a 
vehicle whose future trajectory passes by the base station with the shortest time as the relay 
vehicle through the proposed relay vehicle selection algorithm. Finally, the selected vehicle 
will relay emergency data to the base station and complete communication in the shortest time. 
In order to prove the performance of the proposed algorithm, a set of simulations is performed. 
And the simulation results show that the predicted trajectory is basically consistent with the 
actual trajectory, and the time that the base station receives the data is also greatly reduced. 

The remainder of this paper is organized as follows. The related work is discussed in 
Section 2. In Section 3, the network model and problem definition are described. The proposed 
relay vehicle selection algorithm is introduced in Section 4. In Section 5, the simulation results 
of the proposed scheme are shown. Section 6 is the conclusion. 

2. Related Work 
At present, the predictability of vehicle mobility is mainly divided into predicting its future 
position, trajectory and travelling time [5], as shown in Fig. 1. In [17], the authors proposed a 
vehicle trajectory prediction method that integrates environmental perception and user 
preference. They used the SSEM algorithm to deal with the user preference and employed the 
optimal variational gaussian mixture model to represent the complex environment, so that the 
prediction is realized. This paper focuses on the prediction of future trajectories. There are two 
main methods to solve this problem. The first method is to predict the future trajectory through 
time series. It uses machine learning methods to build the model, and then predicts future 
trajectories by training the existing driving data, as shown in 2.1 [8-10]. The second method is 
to predict the future trajectory of the vehicle by its previous position, direction, velocity and 
acceleration [11-14]. This method measures the change in vehicle state through physical 
motion equations, as detailed in 2.2. 

Based on the predicted trajectory, suitable relay vehicles can be selected. Many people 
focus on relay selection studies. In [18], the authors designed a relay selection method based 
on distance, and developed an analytical model based on competitive delay and packet 
delivery rate (PDR). In [19-21], the authors used machine learning methods such as Markov 
chain as the basis for relay selection. And in [22-25], the authors proposed the algorithm for 
moving target recognition and detection based on the data in the RFID tags, which can better 
identify and classify the data.  

Mobility Prediction Aims in VANETs

Location Trajectory Travelling Time
 

Fig. 1. Type of research for mobility prediction 



3402                                   Jin et al.: Trajectory-prediction based relay scheme for time-sensitive data communication in VANETs 

2.1 Predicting Trajectory Through Machine Learning 
Machine learning is to study how computers simulate or implement human learning behaviors 
to acquire new knowledge or skills, and reorganize existing knowledge structures, which 
continuously improves their performance. The neural network, a kind of machine learning 
method, is a mathematical model that simulates the behavioral characteristics of animal neural 
networks and performs distributed parallel information processing. In [15], a competitive 
neural network is used to extract the mobility pattern of the vehicle, and the extracted pattern is 
utilized to predict the future direction of the vehicle. This is a novel mobility prediction model 
using self-organizing maps (SOMs). 

In order to reduce the impact of resource mobility on vehicle cloud performance, a novel 
solution based on Artificial Neural Network (ANN) mobility prediction model to predict 
future trajectory is proposed in [16]. The authors utilized the performance of the vehicle cloud 
to reduce the impact of sudden changes in vehicle position based on the ANN mobility 
prediction model. The model has three layers: the input layer, the hidden layer and the output 
layer. The method can change the output to a linear function and the NN to continuous linear 
regression. Acceptable performance can be obtained by adjusting NN hyper-parameters, such 
as learning rate, hidden layers, and the number of neurons in each layer. Finally, the cost of 
different schemes is compared to prove the performance of the proposed scheme. The formula 
for the percentage of cost is as follows: 

= 100%jT N T
OH

T
− ×

×  (1) 

where OH  is total overhead percentage, T  is total simulation duration, N  is the number of 
jobs accomplished during simulation, jT  is job duration.  

2.2 Predicting Trajectory by Physical Motion Equation 

 

Fig. 2. Predicting trajectory by physical motion equation 
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Park et al. [26] proposed a method for the routing improvement problems, which used the 
mobility data contained in the beacon to select a reliable intermediate vehicle, as shown in Fig. 
2. The mobility data contains the position in

curP , the velocity in
curV , the acceleration in

cura  and the 
direction in

curθ  at curt . The formula for predicting the position can be got as follows: 

( )pred
i i i i

cur

tn n n n
pred cur cur cur tt

P p a t v d= + +∫  (2) 

The sender vehicle transmits in
predP  to all neighbor vehicles. Each neighbor vehicle will 

calculate the distance d between its actual position and predicted position at predt . If d is less 
than threshold ε, the node will be selected as a candidate vehicle, which can be regard as an 
alternate vehicle for the relay vehicle.  

Then, the mobility state value in
MSV  can be got as follows by using different criteria: 

( ),i in n
MS pred dV D P n MS= +  (3) 

where ( ),in
pred dD P n  is Euclidean distance between in

predP  and the position of destination vehicle 

dn  and MS  is the mobility state function. Finally, the smallest in
MSV  is the relay vehicle.  

Although these articles studied the dynamic motion of the vehicle and made predictions for 
the next moment, they cannot continue to predict the future trajectory of the vehicle. And the 
trajectory prediction method based on deep learning can predict the trajectory of the vehicle 
more accurately than the method based on traditional machine learning.   

3. Network Model and Problem Definition 
The network model and the prediction problem of the future trajectory are introduced in detail 
in this section. We focus on the communication model and the routing protocol in the network 
model, and then the prediction problem is described in the city traffic model, whose solution 
will be given in the next section.  

3.1 Network Model 
Due to the frequent changes in the Vehicle-to-Vehicle(V2V) network topology, it is assumed 
that there is a delay-tolerant communication protocol between vehicles, with certain 
communication delays and intermittent connections. It is consistent with the frequent 
disconnection and connection of V2V networks, which allows vehicles to carry and forward 
the received data.  

Assuming that each vehicle is equipped with GPS, it can ensure that all vehicles can 
accurately locate themselves. On the other hand, all vehicles can clearly know the relative 
position of each base station with GPS, which is expressed in longitude and latitude.  

In the considered network, a cooperative communication strategy between V2V and 
Vehicle to Base Station (V2B) is considered. The communication range of the base station and 
the vehicle is assumed to be Rb and Rv, respectively. Once the distance between the vehicle and 
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the base station is less than Rb, they can directly communicate with each other. Otherwise, the 
vehicle can only communicate with other vehicles when the distance between vehicles is less 
than Rv. So, the vehicle carrying data will forward data to other appropriate vehicles until the 
vehicle enters the communication range of the base station. Then, the vehicle will forward the 
data to the base station. Through this cooperative communication strategy, the data can be 
finally uploaded to the data center. In our network, routing at the Bundle layer is adopted. The 
routing protocol is based on the "storage-carriage-forward" mechanism. The specific process 
is shown in Fig. 3.  

The three-way handshake is used as a confirmation mechanism so that after receiving the 
complete data, the backbone network will respond to the source vehicle a confirmation 
message. That is to say, when the source vehicle receives a confirmation message from the 
backbone network, it stops transmitting data and deletes it from the buffer. 

Start

Whether there is an 
appropriate next hop

Store the packet

Whether there is buffer space

Forward the packet 
to the next node

Select the packet to 
drop

Yes

No

No

Store the packet

A new node enters the 
communication range

Yes

End

Receive the packet

 

Fig. 3. Packet processing flowchart in Bundle protocol 

 

3.2 Problem Definition 
In this paper, a city traffic model is considered. n vehicles are randomly distributed on the 
three lanes: left-turn lane, straight lane, and right-turn lane, and two base stations are located 
nearby. In Fig. 4, a case is illustrated that the source vehicle CO needs to upload a set of 
emergency data to the backbone network. From the GPS information, the nearest base station 
B0 is located on the left side of the next intersection, but the source vehicle does not pass 
through the road section. If CO misses B0, CO has to carry the data to the next base station B1, 
which will take a long time to store data in the buffer. In this case, the best way is to transfer 
the data to B0 as soon as possible instead of carrying it and waiting. Therefore, choosing the 
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appropriate relay vehicle which is moving towards the B0 can significantly reduce the 
transmission delay.  

Once the data is transmitted to the base station through the relay vehicle, after confirming 
the integrity of the data, an ACK message will be sent to the source vehicle to tell it that its 
emergency data has been received, and the data temporarily stored in the buffer can be 
dropped. 

  

  

 

Fig. 4. The scenario proposed in the experiment 

4. Proposed Method 
In a DTN, if the source vehicle CO cannot directly transfer data to the nearest base station B0 
within a required time, it will store and carry the data until a new base station appears, which is 
shown as the B1 in Fig. 4 [27]. Supposing that the time when the source vehicle CO transfers 
data to B1 and B0 are t0 and t1, respectively. And it can be seen that t0 is greater than t1 obviously. 
To transfer data to B0, a vehicle that will pass through B0 must be selected as the relay vehicle. 
Because RNN exhibits good performance in predicting an object movement with continuous 
time-series data and its prediction effect outperforms other neural networks, we use RNN to 
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learn the previous driving data and make a prediction of the future trajectory. And then an 
optimal relay vehicle selection algorithm is proposed to select the vehicle with the shortest 
time consumption as the relay vehicle. The algorithm takes the driving data as the input and 
the minimum transmission delay as the optimization object to get the most suitable relay 
vehicle. As shown in Fig. 5, the relay vehicle is selected and it helps source vehicle CO to relay 
data to the nearest base station B0, which is on the left side of the next intersection shown in 
Fig. 4. Therefore, the timeliness of urgent data can be greatly improved and the 
communication delay can be reduced.  

 vehic

 

 

Fig. 5. Select relay vehicle within one-hop range 

 

4.1 Recurrent Neural Network Based Trajectory Prediction 

4.1.1 Recurrent Neural Network 
Recurrent Neural Network is a kind of neural network dedicated to processing time-series data 
samples. The driving data of a vehicle is a set of time-series data, including the position, speed 
and direction of continuous-time points. So we utilize RNN to discover the correlation 
between time-series data. Each layer of RNN not only outputs to the next layer but also outputs 
to a hidden state. In our network, the future trajectory of the vehicle is related to the current 
position, speed and moving direction. Therefore, we can use these information of the vehicle 
in continuous time to form multiple sets of sequences. Then we predict the trajectory of the 
vehicle at the next moment by observing the correlation between the sequence before and after. 
When the speed of the vehicle is very fast, it will be farther away from the current position at 
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the next moment. On the contrary, if the speed is very low, it will be close to the current 
position at the next moment.  

x

unfold

1−tx tx 1+tx

U

Wh 1−th th 1+th

z 1−tz tz 1+tz

V V VV

U U U

W W W

 

Fig. 6. A simple RNN structure 

As shown in Fig. 6, the left part is a simple RNN structure, and the right part is the effect of 
expanding the whole network in form of time series. In this Recurrent Neural Network, the 
input at time t consists of two parts, one is the driving data x at the current time t, the other is 
the output h at time t-1. It can be seen that the prediction at time t is affected by all the driving 
data before t. We use the connections between neurons recurrently to form Recurrent Neural 
Network. 

The recursion formula of RNN is as follows: 

( )1t t t hh tanh Ux Wh b−= + +  (4) 

( )+bt t zz softmax Vh=  (5) 

where th  is hidden layer vector, U  is weighting matrix in the input layer, tx  is input vector, 
W  is weighting matrix in the hidden layer and hb  is bias vector. tz  is output vector, V  is 
weighting matrix in the output layer, zb  denotes bias vector. RNN is good at dealing with 
long-term dependencies. But if the interval is too long, the weighting matrix will be multiplied 
by the previous output, which will cause a gradient explosion problem. Thus, Long 
Short-Term Memory (LSTM) network, a special kind of RNN, is employed to solve such 
problem.  

4.1.2 Long Short Term Memory Network 
An RNN consisting of LSTM units is called an LSTM network. LSTM inherits the advantages 
of the RNN model and can solve the problem of the vanishing gradient. LSTM adds three 
sigmoid functions (i.e., forget gate, input gate and output gate) to each small unit. The 
following describes how LSTM solves long-term dependency problems in the driving data of 
vehicles with three gates in a neuron.  
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(1) Forget Gate 
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Fig. 7. Forget gate 

The forget gate layer in neuron determines which information will be discarded from the state 
information. As shown in Fig. 7, the forget gate will read 1th −  at the previous unit and tx  at 
current time, which consists of longitude, latitude, direction, and speed of the vehicle at time t. 
Then the formula for memory cells tf  can be got as follows:  

[ ]( )1,t f t t ff W h x bσ −= ⋅ +  (6) 

where tf  means the forget gate at the time t, σ  is the logistic sigmoid function, a threshold 
function for NN. fW  denotes weight matrices in the forget gate, th  is the hidden vector at time 

t, fb  denotes bias vectors in the forget gate, [ ]1 2, ,...,= nx x x x  is an input sequence. tf  is a 
number between 0 and 1. Here, 1 means completely remembered and 0 means completely 
forgotten. After 1tC −   receives tf , it will determine how much driving data will be forgotten 
from itself.  

(2) Input Gate 
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Fig. 8. Input gate 
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The input gate is used to add new information to the state information, which is shown in Fig. 
8. The same with the forget gate, the current ti  and the new state information n

tC  are obtained 
from the input tx  and 1th − , which are shown in Eq. (7) and (8), respectively.  

[ ]( )1,t i t t ii W h x bσ −= ⋅ +  (7) 

[ ]( )1,−= ⋅ +n
t C t t CC tanh W h x b  (8) 

where ti  means the input gate at the time t and determines how much driving data will be 
remembered in the cell state, iW  denotes weight matrices in the input gate, ib  denotes bias 
vectors in the input gate. CW  is weight matrices in the state information, Cb  is bias vectors in 
the state information.  

Then the current new state information tC  is obviously calculated by the following formula:  

1−= ∗ + ∗ n
t t t t tC f C i C  (9) 

where tC  is state information at time t, tf  means the forget gate at the time t.  

(3) Output Gate 

⊗
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⊗

⊕1−tC

th

th

ti tO
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1−th

tx

n
tC

 

Fig. 9. Output gate 

 

Finally, the value of the output needs to be determined by LSTM. This is decided by the output 
gate as shown in Fig. 9. The output gate adds 1th −  at the previous unit and tx  to a sigmoid 
function. Then to  can be got as shown in Eq. (10), which determines how much information 
needed to output from the state information:  

[ ]( )1,t o t t oo W h x bσ −= ⋅ +  (10) 
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where to  means the input gate at the time t, oW  denotes weight matrices in the output gate, ob  
denotes bias vectors in the output gate. Then we multiply to  with the output of the sigmoid 
gate ( )ttanh C . Finally, the output information at time t  can be shown in Eq. (11).  

( )t t th o tanh C= ∗  (11) 

4.2 Learning and Training 
As described in 4.1, LSTM can train long-term dependency information. Additionally, it can 
solve the vanishing gradient problems. So LSTM is suitable for predicting the trajectory of the 
vehicle.  

When the source vehicle needs to upload emergency data to a data center, the vehicle first 
judges whether it will pass through the nearest base station based on the GPS information. If 
not, it will take a long time to transmit the data and reduce the timeliness of the emergency data, 
which shows that selecting the appropriate relay vehicle will facilitate the rapid upload of data. 
In this paper, we utilize the driving data of vehicles, which can be obtained easily by the GPS 
information and regard taxis as relay vehicles.  

In summary, we use the RNN trajectory prediction method to predict the trajectory of all 
taxis within the one-hop range of the source vehicle. Since all taxis are equipped with GPS, it 
will record the driving data within 24 hours, including longitude, latitude, direction, and speed 
data. Firstly, we select these four features as the learning objects of the RNN. The values of the 
four features at time t and the output at time t-1 are taken as input data. Then, the forget gate 
determines which information will be discarded from the state information tC  by the value of 

tf , the input gate determines how much information will be added to the state information tC  
by the value of ti . Meanwhile, the state information tC  will be updated. Finally, the state 
information is processed through tanh and multiplied by the output of the sigmoid function, 
and the output gate will only output the part determined. In general, Recurrent Neural Network 
training model can be shown in Fig. 10.  

 

longitude

speed

direction

latitude
NetworkNeuralinput output trajectory

 

Fig. 10. Recurrent Neural Network training model 
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4.3 Relay Vehicle Selection Algorithm 
As mentioned in 4.2, the predicted trajectory is composed of consecutive time positions, so the 
trajectory can be represented as a collection of positions, which is represented by longitude 
and latitude. The set can be formalized mathematically as follows:  

( ) ( ) ( ){ }1 1 2 2, , , ,..., , ( 0, 0 )m m m m m mn mnVehicle log lat log lat log lat n m M= > < ≤  (12) 

where m  is the ID of the vehicle, n  is the time point, M is the total number of vehicles. 

Meanwhile, each position corresponds to a point in time, so the set of time points of the 
vehicle can be expressed as:  

{ }1 2, ,...,m m m mnT t t t=  (13) 

When the vehicle enters the communication range of a base station, the data communication 
can be performed. In order to numerically analyze, the communication range of a base station 
is expressed as a set of position points. The set is defined as Eq. (14):  

( ) ( ) ( ){ }1 1 2 2, , , ,..., , ( , 0)i i i i i ij ijBS log lat log lat log lat m n= >  (14) 

Where i  denotes the ID of the base station and j  is the number of the position.  

Next, it is necessary to make a judgment on the relationship between ( ),mn mnlog lat  and iBS . 
If   

( ),mn mn ilog lat BS∈ , (15) 

we put the time point of vehicle m that satisfies Eq. (15) into a new set as follows:  

{ }1 2, ,..., ( , )k z k mT t t t z n T T= ≤ ∈ . (16) 

Then, if the vehicle m is selected as the relay vehicle, the minimum time it takes to transmit 
the data to the base station can be obtained in Eq. (17): 

( )m
min kt min T=  (17) 

The above calculation process is performed on all vehicles within the one-hop range of the 
source vehicle, and the minimum time required for all vehicles to transmit data to the base 
station is obtained. After grouping them into a new collection, each item of the set is the 
shortest time it takes for the vehicle to pass the data.  

{ }1 2, ,..., m
min min min minT t t t=  (18) 

( )min mint min T=  (19) 

Finally, we will select the vehicle corresponding to mint  as the relay vehicle, which 
completes the communication task of transmitting emergency data to the base station. And the 
time it takes to pass data is ensured to be the shortest of all vehicles within a hop range. The 
specific algorithm can be seen in Algorithm 1:  
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Algorithm 1  Relay vehicle selection algorithm 

Input: ( ) ( ) ( ){ }1 1 2 2, , , ,..., ,m m m m m mn mnVehicle log lat log lat log lat= ,  

{ }1 2, ,...,m m m mnT t t t= ,  

( ) ( ) ( ){ }1 1 2 2, , , ,..., ,i i i i i ij ijBS log lat log lat log lat=   

1   For (m=1, m<=M, m++) 

2         If ( ),mn mn ilog lat BS∈  then 

3         Record the time point corresponding to the position that satisfies the condition into a new set: 
{ }1 2, ,...,k zT t t t=  

4         Get the shorest time for vehicle m : ( )m
min kt min T=   

5   Search the minimum time for each vehicle : { }1 2, ,..., m
min min min minT t t t=  

Output: The vehicle which has the minimum m
mint  

By summarizing, the entire flow chart of the proposed relay vehicle selection algorithm is 
shown in Fig. 11:  

Start

Collect taxi driving data

Use RNN to predict the 
trajectory of  taxis

Compare the predicted  trajectory with 
the location of the communication 

range of each base station

Record the corresponding 
time through the base station

Whether the trajectory passes through the 
communication range of the base station

Summarize the shortest 
time of all taxis

Select the taxi with the shortest 
time as the relay vehicle

End

Yes

No

 
Fig. 11. Flow chart of the proposed relay vehicle selection algorithm 
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5. Simulation 

5.1 Data Processing 
In order to accurately predict the vehicle's trajectory, we need to collect the vehicle's driving 
data, including longitude, latitude, speed, direction. In reality, the collection of data on private 
vehicles is unrealistic because it involves personal privacy. We use the data set of taxis to 
replace, because it is relatively more transparent. The data set comes from the Smart City 
Research Group of Hong Kong University of Science and Technology [28]. It contains the 
driving trajectories of 4316 groups of taxis within 24 hours.  

First, in order to eliminate the problem of accuracy reduction caused by the proportions of 
the different fields in the data set and eliminate the dimensional impact between the indicators, 
we use Min-max normalization to resolve comparability between data metrics and limit the 
results between 0 and 1. The Min-max normalization is as follows:  

( )
( ) ( )

x min x
x

max x min x
∗ −
=

−
 (20) 

Where ( )max x  is the maximum value of the sample data and ( )min x  is the minimum value 
of the sample data.  

Then the four characteristic values are regularized to make the data fall within a certain 
statistical interval. The LSTM neural network is used to train the first 80% data set. Then it 
predicts where the vehicle will arrive in the future and compares it to the actual arrival position. 
Root mean square error (RMSE) is used to evaluate the accuracy of the prediction. When the 
value of RMSE is smaller, the accuracy of the prediction model describing the experimental 
data will be higher. The formula is shown in Eq. (21).  

( )2
, ,1

n
obs i model ii

X X
RMSE

n
=

−
= ∑  (21) 

Where ,obs iX  is the observed value, ,model iX  is the actual value.  

5.2 Simulation Results 
There are 200 vehicles in the experiment, each vehicle randomly selected 10 groups driving 
data from the 4316 groups of data without repetition. We use the first 8 groups of data for 
training and the 9-th group and the 10-th group for testing. The position at t=0 of the 9-th or 
10-th group is regarded as the starting position of the vehicle in the experiment, and the 
position of the first vehicle is regarded as the origin of the coordinate system. The east-west 
direction and the north-south direction are taken as the x-axis and the y-axis, respectively. 
Then other vehicles are mapped to the coordinate system according to their position. 

To demonstrate the performance of the method, one vehicle is selected randomly from 200 
vehicles at a time as the source vehicle. When the source vehicle needs to relay data, it will 
broadcast the relay request within the communication range. Then, the vehicle receiving the 
relay request immediately reads the driving data of the first three hours in the memory and 
inputs them into LSTM prediction model to predict the driving trajectory. Finally, each 
vehicle sends its predicted trajectory to the source vehicle. And the source vehicle selects the 
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vehicle with the shortest time as the relay vehicle according to the proposed relay vehicle 
selection algorithm. Each experiment simulation is carried out 100 times and takes the average 
value as the final result to verify the superiority of the algorithm.  

Fig. 12 shows the effect of trajectory prediction using LSTM, where the blue line is the real 
value and the orange line is the predicted value. As shown in Fig. 12, the 9-th group and the 
10-th group are used for testing after the model training is completed. Then we use the first 
80% data of the 10-th group as input and compare the predicted value of the output with the 
real value. Fig. 12(a) is the result on time and longitude and Fig. 12(b) is the result on time and 
latitude. Fig. 12 indicates that the predicted trajectory is basically consistent with the actual 
trajectory, which demonstrates the accuracy of our proposed method.  

 
(a) 

 
(b) 

Fig. 12. The predicted result of trajectory based on LSTM. 
(a) longitude, (b) latitude 
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Fig. 13 shows the spiraling trajectory of the vehicle, where the longitude and latitude are 
taken as the x-axis and the y-axis, respectively, and the time t is taken as the z-axis. This is 
because the data of the vehicle comes from the taxi, and the taxi is likely to stay in an area for 
a long time due to the traffic jam, resulting in the spiraling trajectory. In Fig. 13(a), the blue 
dashed line is the real driving trajectory, and the green line is the predicted trajectory. The 
comparison result of actual driving trajectory and the predicted trajectory shows that the 
predicted trajectory is good. For a more detailed observation, we take out the part from 1200s 
to 1260s of Fig. 13(a), as shown in Fig. 13(b). It can be seen that the predicted trajectory and 
position are very accurate, but there is a little time delay.  

  

(a) 

 
(b) 

Fig. 13. The result of RNN-based trajectory prediction. 
(a) from 0s to 1260s, (b)from 1200s to 1260s 
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Fig. 14. Time spent passing data to the base station 

Fig. 14 shows the time it takes for the vehicle to transmit data to the base station. Assuming 
that there are 10 taxis in the one-hop of the source vehicle, and they are distributed in the road 
randomly. The performance of the proposed algorithm is compared with a random method, 
which randomly selects a vehicle as the relay vehicle, and the comparison experiment 
conducts 10 times. In Fig. 14, the red line is the vehicle chosen according to our proposed 
method, and the green line is the vehicle chosen according to the random method. As can be 
seen, the vehicle selected by the random method has only 20% chance of choosing a vehicle 
with a shorter time and 80% chance of choosing a vehicle with a longer time than our proposed 
method. Therefore, the relay vehicle obtained by the relay vehicle selection algorithm can 
effectively reduce the network communication delay and improve the timeliness of the 
emergency data.  

Table 1. The RMSE of longitude and latitude 
 Longitude Latitude 

Train Score 0.016   RMSE 0.010   RMSE 
Test Score 0.005   RMSE 0.003   RMSE 

 
As shown in Table 1, the RMSE of the relay vehicle selected by the algorithm is very low. 

The RMSE for training is only 1%-2%, and the RMSE for testing is less than 1%. Therefore, 
the prediction of our proposed algorithm is accurate. Compared with carrying and forwarding 
data to BS, the optimal relay vehicle selection algorithm we proposed can effectively reduce 
the delay.  

6. Conclusion 
In this paper, we proposed a relay vehicle selection algorithm based on RNN trajectory 
prediction to reduce the communication delay in VANTE and improve the timeliness of data. 
The proposed method adopts a distributed scheme for vehicle trajectory prediction. When a 
vehicle needs to relay data, it broadcasts the relay signal within the communication range. 
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Then, the vehicle receiving the relay signal immediately reads the driving data of the first three 
hours in the memory and inputs them into the prediction model to predict the driving trajectory. 
In addition, each vehicle forwards them to the source vehicle after getting the predicted 
driving trajectory, and the source vehicle selects the optimal relay vehicle according to the 
relay vehicle selection algorithm. Finally, the source vehicle forwards the data to the relay 
vehicle and then to the base station. And the base station replies an ACK message to complete 
the communication when the relay vehicle completes transmitting the data.  

The simulation results show that the proposed method has high accuracy for vehicle 
mobility prediction, and it can reduce communication delay and improve the timeliness of 
data.  
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