• Title/Summary/Keyword: Transmission costs

Search Result 233, Processing Time 0.024 seconds

A Cooperative Game Embedding Transmission Pricing in the Competitive Electricity Market (송전요금을 고려한 게임이론적 전력거래분석)

  • Kang, Dong-Joo;Kim, Bal-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.3-5
    • /
    • 2000
  • It has been the paradigm of game theory that more than two utilities compete and determine the price and amount of dispatch. In order for this theory to be available on real power system, it is necessary to consider the transmission costs as well as the generation costs. In addition Independent System Operator(ISO) should be able to mitigate the congestion, recover the transmission costs and provide information for long-term capacity investment by devising reasonable pricing schemes for the transmission services. Generators also have to take the transmission costs into account when building the bidding strategies. This paper proposes an approach to analyzing the profit maximizing game considering the transmission cost in a competitive electricity market.

  • PDF

An Analysis of Congestion Cost for Electric Power Transmission in Consideration of Uncertainty of Future Electric Power System (미래 전력 계통의 불확실성을 고려한 송전혼잡비용 분석)

  • Park, Sung Min;Kim, Sung Soo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.3
    • /
    • pp.131-137
    • /
    • 2014
  • It is expected that there will be delay of scheduled transmission network reinforcement and huge investment of renewable energy resources in Korea. As transmission capacity expansion delayed, supplying power to Seoul metropolitan area will not be increased as scheduled. In addition, uncertain renewable energy out of Seoul metropolitan area can cause transmission congestion in the future power system. These two combining effects will make the difference in locational marginal prices(LMP) and congestion costs increase. In that sense, this paper will analyze how much the congestion costs for Korea power system are incurred in the future power system. Most of previous approaches to analyze the congestion costs for electric power system are based on the optimal power flow model which cannot deal with hourly variation of power system. However, this study attempted to perform the analysis using market simulation model(M-Core) which has the capability of analyzing the hourly power generation cost and power transmission capacity, and market prices by region. As a result, we can estimate the congestion costs of future power system considering the uncertainty of renewable energy and transmission capacity.

The Power Flow Control of UPFC for Cost Minimization

  • Lim, Jung-Uk;Moon, Seung-Il
    • KIEE International Transactions on Power Engineering
    • /
    • v.12A no.1
    • /
    • pp.31-35
    • /
    • 2002
  • This paper presents a new operation scheme of UPFC to minimize both generation costs and active power losses in a normal operation state of power system. In a normal operation, cost minimization is a matter of primary concern among operating objectives. This paper considers two kinds of costs, generation costs and transmission losses. The total generation cost of active powers can be minimized by optimal power flow, and active power losses in the transmission system can be also minimized by power flow control of UPFC incorporated with minimization of generation costs. In order to determine amounts of active power reference of each UPFC required for the cost minimization, an iterative optimization algorithm based on the power flow calculation using the decoupled UPFC model is proposed. For verification of the proposed method, intensive studies have been performed on a 3-unit 6-bus system equipped with a UPFC.

An Approach to Allocating Transmission System Reliability Cost (송전계통의 신뢰도 비용 배분 방만에 대한 연구)

  • Jeong, Gu-Hyeong;Sin, Yeong-Gyun;Kim, Bal-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.4
    • /
    • pp.183-187
    • /
    • 2002
  • The efficient and rational transmission tariff structure is one of the crucial factors in creation of fair and competitive electricity markets. Transmission charge can be largely categorized into the line usage charge, system reliability charge, access charge and others. Any transmission tariff should be able to reflect these cost components reasonably. This paper suggests an approach amenable to allocating the transmission reliability costs reasonably with reflection of line sensitivity and line outage rate.

Probabilistic Technique for Power System Transmission Planning Using Cross-Entropy Method (Cross-Entropy를 이용한 전력계통계획의 확률적 기법 연구)

  • Lee, Jae-Hee;Joo, Sung-Kwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2136-2141
    • /
    • 2009
  • Transmission planning is an important part of power system planning to meet an increasing demand for electricity. The objective of transmission expansion is to minimize operational and construction costs subject to system constraints. There is inherent uncertainty in transmission planning due to errors in forecasted demand and fuel costs. Therefore, transmission planning process is not reliable if the uncertainty is not taken into account. The paper presents a systematic method to find the optimal location and amount of transmission expansion using Cross-Entropy (CE) incorporating uncertainties about future power system conditions. Numerical results are presented to demonstrate the performance of the proposed method.

Evaluation of Power Wheeling Costs Based on the Postage Stamp Method (우편요금제에 기초한 전력탁송 요금의 계산)

  • Park, Jong-Bae;Kim, Bal-Ho;Lim, Ju-Sung;Lee, Sang-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1015-1019
    • /
    • 1998
  • This paper presents the evaluation results of Korea Electric Power Corporation (KEPCO) system's power wheeling costs based on the postage stamp method. The results of several postage-stamp-based methodologies are compared where some of them are the conventional approaches. others are new approaches suggested in this paper. The approaches developed in this paper are suitable for a system where transmission transactions are occurred within a vertically integrated power system just like as Korea, Japan. etc. Also, they can overcome limitations related on the depreciation costs application. Test results show that the computed wheeling costs are around 4.0 [won/kWh] in 1995, and it is anticipated that the cost will increase when considering transmission network losses and ancillary costs.

  • PDF

Application of Particle Swarm Optimization to the Reliability Centered Maintenance Method for Transmission Systems

  • Heo, Jae-Haeng;Lyu, Jae-Kun;Kim, Mun-Kyeom;Park, Jong-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.814-823
    • /
    • 2012
  • Electric power transmission utilities make an effort to maximize profit by reducing their electricity supply and operation costs while maintaining their reliability. The development of maintenance strategies for aged components is one of the more effective ways to achieve this goal. The reliability centered approach is a key method in providing optimal maintenance strategies. It considers the tradeoffs between the upfront maintenance costs and the potential costs incurred by reliability losses. This paper discusses the application of the Particle Swarm Optimization (PSO) technique used to find the optimal maintenance strategy for a transmission component in order to achieve the minimum total expected cost composed of Generation Cost (GC), Maintenance Cost (MC), Repair Cost (RC) and Outage Cost (OC). Three components of a transmission system are considered: overhead lines, underground cables and insulators are considered. In regards to aged and aging component, a component state model that uses a modified Markov chain is proposed. A simulation has been performed on an IEEE 9-bus system. The results from this simulation are quite encouraging, and then the proposed approach will be useful in practical maintenance scheduling.

Economic Analysis of Power Transmission Lines using Interval Mathematics

  • Teegala, Srinivasa Kishore;Singal, Sunil Kumar
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1471-1479
    • /
    • 2015
  • A major portion of the capital costs in the present day power transmission systems are due to the cost of equipment and construction process. Transmission utilities in the recent years are drawing greater attention towards performing life cycle costing studies for cost management and decision making. However, the data involved in these studies are highly uncertain and the effect of these uncertainties cannot be directly included in the study process, resulting in inaccurate solutions. Interval mathematics provides a method for including these uncertainties throughout the cost analysis and provides final solution range in the form of intervals. In this regard, it is essential and extremely important that significant research has to be carried out in understanding the principles of life cycle costing methodology and its applicability to cost analysis of transmission lines along with uncertainties involved in the cost assessment process. In this paper, economic analysis of power transmission lines using interval mathematics has been studied. Life cycle costing studies are performed using net present value analysis on a range transmission lines used in India and the results are analyzed. A cost break even analysis considering right of way costs was carried out to determine the point of economy indifference.

Reliability-guaranteed multipath allocation algorithm in mobile network

  • Jaewook Lee;Haneul Ko
    • ETRI Journal
    • /
    • v.44 no.6
    • /
    • pp.936-944
    • /
    • 2022
  • The mobile network allows redundant transmission via disjoint paths to support high-reliability communication (e.g., ultrareliable and low-latency communications [URLLC]). Although redundant transmission can improve communication reliability, it also increases network costs (e.g., traffic and control overhead). In this study, we propose a reliability-guaranteed multipath allocation algorithm (RG-MAA) that allocates appropriate paths by considering the path setup time and dynamicity of the reliability paths. We develop an optimization problem using a constrained Markov decision process (CMDP) to minimize network costs while ensuring the required communication reliability. The evaluation results show that RG-MAA can reduce network costs by up to 30% compared with the scheme that uses all possible paths while ensuring the required communication reliability.

A Study on the Electrical Impulse Characteristics Between Transmission Line and Trees (송전선로와 수목과의 전기적 섬락특성)

  • Lee, H.K.;Cho, Y.K.;Kang, H.K.;You, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.516-518
    • /
    • 2003
  • Our transmissions are mostly constructed on the mountains and passing over the mountains. The height of transmission lines are generally decided from the trees on the mountains. The height of the transmission lines is very important, because it has an effect on construction and maintenance costs of the transmission lines. We carried out tests for electrical impulse characteristics between trees and transmission lines, and suggested the test results.

  • PDF