
J Electr Eng Technol Vol. 7, No. 6: 814-823, 2012 
http://dx.doi.org/10.5370/JEET.2012.7.6.814 

 814 

Application of Particle Swarm Optimization to the Reliability 

Centered Maintenance Method for Transmission Systems  
 

 

Jae-Haeng Heo*, Jae-Kun Lyu*, Mun-Kyeom Kim
†
 and Jong-Keun Park*

 
 

 

Abstract – Electric power transmission utilities make an effort to maximize profit by reducing their 

electricity supply and operation costs while maintaining their reliability. The development of 

maintenance strategies for aged components is one of the more effective ways to achieve this goal. The 

reliability centered approach is a key method in providing optimal maintenance strategies. It considers 

the tradeoffs between the upfront maintenance costs and the potential costs incurred by reliability 

losses. This paper discusses the application of the Particle Swarm Optimization (PSO) technique used 

to find the optimal maintenance strategy for a transmission component in order to achieve the 

minimum total expected cost composed of Generation Cost (GC), Maintenance Cost (MC), Repair 

Cost (RC) and Outage Cost (OC). Three components of a transmission system are considered: 

overhead lines, underground cables and insulators are considered. In regards to aged and aging 

component, a component state model that uses a modified Markov chain is proposed. A simulation has 

been performed on an IEEE 9-bus system. The results from this simulation are quite encouraging, and 

then the proposed approach will be useful in practical maintenance scheduling.  
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1. Introduction 
 

A transmission system is composed of many different 

types of equipment, much of which was installed several 

decades ago, and so this equipment has deteriorated over 

time. Further deterioration may be unavoidable in the near 

future. As a result, the equipment performance will suffer 

and the equipment failure rate will increase. Accordingly, it 

is essential to find a suitable equipment model and a well-

organized maintenance strategy that uses this equipment 

model. Time-Based Maintenance (TBM) is the most 

common method used for maintenance scheduling. 

Whereas this approach has the advantages of simple 

scheduling and high availability, it is not the most cost 

effective. In recent years, new maintenance scheduling 

techniques involving condition monitoring have been 

proposed [1-3]. The goal has been in the development of 

new maintenance strategies, such as the Condition-Based 

Maintenance (CBM) method, which can retain system 

reliability while reduce maintenance costs. Condition-

Based Maintenance is driven by the actual condition of the 

equipment. However, it does not take into account on how 

the system is impacted by the failure of a specific piece of 

equipment. The Reliability-Centered Maintenance (RCM) 

method, on the other hand, not only considers the technical 

condition of a piece of equipment but also the importance 

of the equipment has to the whole system; it is expected to 

be the most cost effective method when compared to the 

traditional approach.  

The RCM concept has been described in many studies 

[4-8]. The most of research focuses on the relationship 

between the reliability and cost on RCM models [4-6]. The 

model described in [4] determines a maintenance interval 

very similar to another maintenance method called TBM. 

The model described in [5] determines the inspection 

interval. However, the RCM framework should be required 

a variable failure rate that calculated on a yearly basis. 

Although the model described in [6] includes various 

maintenance activities, it decides on the maintenance 

schedule based only on the maintenance cost and 

associated probability. In [7], the authors presented the 

RCM method used for transmission systems. However, this 

particular study does not describe any method to quantify 

the impact of the maintenance on the reliability. The 

quantified impact of planned transmission outages on the 

overall system reliability has been focused in [8]. However, 

it does not take into account the state of the equipment, 

which varies over time. Consequently, these studies show 

the difficulty and the limitations found in the achievement 

of a maintenance strategy involving different kinds of aged 

and aging equipment. 

For the development of a maintenance strategy that takes 

into account aged and aging equipment in a transmission 

system, this paper proposes a new approach using a 

modified Markov chain as an equipment model. It is 

represented by a chain of states that represent increasing 
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levels of equipment deterioration. Since a transmission 

system is quite complicated, in that it consists of various 

types of equipment and loads, various factors, such as the 

equipment type, the equipment state, and the maintenance 

order have to be considered in the maintenance strategy of 

a transmission system. The basic problem addressed by a 

transmission system maintenance strategy is that it has a 

combinatorial explosion of choices and a very large search 

space. Solving this problem through analytical methods 

requires too much time and computational cost because of 

the vast search space and uncertainty. In such cases a 

heuristic approach can be used to find a feasible solution 

close to the optimal solution that reduces the simulation 

time and memory requirements through experience-based 

techniques. Among these heuristic approaches, Particle 

Swarm Optimization (PSO) is applied in this paper, in 

order to efficiently find the optimal maintenance strategies. 

We also propose a comprehensive model for the RCM that 

focuses on preserving the system functions and the system 

reliability. Using the proposed model, the optimal 

maintenance strategies derived through the PSO can be 

determined simultaneously based on the impact of the 

equipment maintenance to the system.  

 

 

2. Modeling Equipment 

 

A great deal of transmission equipment was installed 

several decades ago, and so has essentially deteriorated 

over time. Further deterioration is unavoidable. Equipment 

performance will be lowered and the equipment failure rate 

will increase. Consequently, conventional Markov models 

which are based on the assumption of constant transition 

rates (independent of time), should not be applied for the 

aging failure. In order to handle this problem, two methods 

are employed conventionally. One method is using the 

Weibul distribution. This has the advantage of representing 

all kinds of time varying failure rate, however, it needs a 

large historical data and the calculation time. Another 

method is modifying the Markov chain appropriately. It has 

a great advantage of performing the simulation. In this 

paper, in order to simulate the influence of the equipment 

deterioration, the operational state of the Markov model is 

represented by a chain of states related to the increasing 

levels of equipment deterioration. The equipment model 

using the modified Markov chain [9] is suitable for the 

RCM method. 

 

2.1 Basic equipment model 

 

In order to overcome the Markov model restrictions 

regarding constant transition rates (independent of time), 

the time dependent function of the transition rate (the bath-

tub curve) is replaced by a step-by-step function with 

discrete increasing transition rate levels. In the modified 

Markov chain seen in Fig. 1, the operation state is divided 

into sub-states with an increasing level of wear (normal 

state N, deterioration states D1 to D2). State N represents a 

new system without degradation. The state transitions are 

governed by the transition rate λ1 and λ2 which are 

interpreted as the reciprocals of the mean times spent in the 

deterioration state. From failure states F, a repair 

transforms the system back to a working state by repair 

rate µ (the reciprocal of the mean value of the repair 

duration). M1 (weak maintenance) and M2 (strong 

maintenance) are the maintenance methods dependent on 

the deterioration state of the equipment (D1 or D2). D2 is 

different from F. D2 means that the equipment is still in 

service although the sensor has detected troubles in the 

equipment, however, the F state represents an out of order 

state of the equipment. If any maintenance methods are 

performed, the equipment state will become N by µ1 or µ2. 

Using the information taken from the real time sensors S, 

an inspector decides whether or not to perform 

maintenance. The decisions regarding d12, d22, d11, and d21, 

which are not a transition rate, need to be made in order to 

minimize the total expected cost which consists of the sum 

of the customer outage cost, the maintenance cost, the 

repair cost and the generation cost. In the cost estimation, 

the equipment state and the expected impact of the 

equipment state to the entire system are considered in order 

to make decisions. This is the core point of this model. 

 

 

Fig. 1. The basic equipment state model 

 

 

2.2 Applications to actual equipment 

 

The equipment state model is adjusted by changing the 

number of deterioration states. The number of deterioration 

states is defined as the actual equipment aging stages and 

the possible maintenance methods. This enables the 

equipment state model to represent different kinds of 

equipment in the transmission system. 

In this paper, an overhead-line, an insulator, and an 

underground cable have been selected as the study models. 

These three elements are the main components of 

transmission system; the failure of this equipment is related 

to the entire system failure. These components have 

different features and deterioration processes. Thus, the 

equipment state model needs to be adjusted in accordance 
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with the equipment’s characteristics. The deterioration 

states in this paper are defined on based of the inspection 

criteria used in the transmission utilities. The selection of 

the deterioration states may vary with the transmission 

utility company. Reasonable assumptions for the 

equipment state model were made for this study and are 

summarized below. 

 

2.2.1 Underground cable 

When inspecting a cable, an isothermal relaxation 

current analysis is used to calculate the aging factor. 

Isothermal relaxation current analysis is a non-destructive 

method that determines the aging status of a dielectric. The 

insulation status can be determined by measuring the 

relaxation current in the time domain [10].  

The aging factor is determined by using the measured 

depolarization currents from laboratory and field aged 

cables. After the removal of the electric field, time 

dependant reactions follow whereby the dipoles tend to 

return to their random state over the duration of a few 

hundreds of seconds as a result of the thermal emission of 

the electrons. This is determined by the aging status of the 

power cable insulation. 

The status of a cable can be classified into four states 

according to the aging factors taken from the isothermal 

relaxation current analysis. Table 1 shows the aging factors 

and the state criteria of the cables. The modified Markov 

chain modeling of cables is the same as seen in Fig. 1. 

 

Table 1. The state criteria of underground cable 

Aging factor ~1.85 1.85~2.60 2.60~ Failure 

State N D1 D2 F 

 

2.2.2 Overhead line 

Three elements (line tension, line temperature, and line 

sag) contribute to an overhead line failure. Real time 

sensors monitor the condition of these three elements, and 

send a signal if they detect any problems in these elements. 

The equipment state model is defined according to these 

signals. 

Table 2 shows the state criteria for the overhead lines. A 

number of signals are sent from the sensors that monitor 

the line tension, line temperature, and line sag; they are 

used to represent the states in this model: N for 0 troubled 

elements, D1 for 1 troubled element, D2 for 2 troubled 

elements, and D3 for 3 troubled elements. The equipment 

state model of the overhead line is the same as shown in 

Fig. 2. 
 

 

Fig. 2. The equipment state model of the overhead line 

 

2.2.3 Insulator 

For insulator inspection, the detection of a damaged spot 

or an arc discharge is needed. The state of the insulator is 

defined using information from the real time sensors for 

the above two elements. When either a damaged spot or an 

arc discharge is discovered the state of the equipment state 

model is changed. Table 3 indicates the state criteria for the 

insulator with the equipment state model of the insulator as 

illustrated in Fig. 3.  

 

 

Fig. 3. The equipment state model of the insulator 

 

Table 3. The state criteria of insulators 

The trace of the arc or 

The damaged spot 
State 

O N 

X D1 

Failure F 

 

 

3. Particle Swarm Optimization on the Reliability 

Centered Maintenance 

 

3.1 Overview of PSO 

 

Kennedy and Eberhart first introduced Particle Swarm 

Optimization (PSO) in 1995 [11]. A PSO algorithm is 

 

Table 2. The state criteria of overhead lines 

Tension Temperature Sag State 

O O O N 

O O X 

O X O 

X O O 

 
D1 

O X X 

X O X 

X X O 

 
D2 

X X X D3 

Failure F 
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based on the behavior of the particles of a swarm. Its roots 

are found in the simulation of the behavior of social 

systems, such as fish schooling and birds flocking [12]. 

The basic assumption of the PSO algorithm is that, birds 

find food by flocking rather than not individually. This 

leads to the assumption that information is owned jointly in 

flocking. Basically, the PSO was developed for a two-

dimensional solution space. The position of each individual 

is represented by its X-Y axis position; its velocity is 

expressed by Vx in the x direction and Vy in the y direction. 

Modifications to the particle position are made by using the 

velocity and position information. The PSO algorithm for 

k-dimensional problem formulation based on the above 

concept can be described as follows; Let P is the ‘particle’ 

(position) and V its speed (velocity) in a search space. 

Consider i as a particle in the total population (swarm). The 

i-th particle position can be represented as Pi=(Pi1, Pi2, Pi3, 

… PiL) in L-dimensional space. The best previous position 

of the i-th particle is stored and represented as 

Pbesti=(Pbesti1, Pbesti2, .... Pbestik). All of the Pbesti are 

evaluated by using a fitness function. The best particle 

among all of the Pbest becomes Gbest. The velocity of the 

i-th particle is expressed as Vi=( Vi1, Vi2, … Vik). The 

modified velocity of each particle is calculated using the 

current velocity, the distance between the current position 

and Pbesti and the distance between the current position 

and Gbest. This can be formulated as:  

 

 ( 1) ( )
*

( )( )
1* 1*( )

( )( )
2* 2*( )

iter iter
V W V
ik ik

iteriter
c rand Pbest P

ik ik

iteriter
c rand Gbest P

ik

+
=

+ −

+ −

 (1) 

 

( 1) ( 1)

1,2,3,....... 1, 2,3,....

iter iteriterP P V
ikik ik

i Ps k L

+ +
= +

= =

   (2) 

 

max max
( )

min max

V V V
k ik k

P P P
k ik k

− ≤ ≤

≤ ≤

      (3) 

 

The use of a linearly decreasing inertia weight factor 

provides an improved performance in all of the 

applications. Its value decreases linearly from about 0.9 to 

0.4 during a run. The suitable selection of the inertia 

weight provides a balance between the global and local 

exploration and exploitation, and results in less iteration on 

average to find a sufficiently optimal solution. Its value is 

set according to the following equation [13, 14]: 

 

 
max min *

max
max

W W
W W iter

iter

−
= −   (4) 

 

Here, Wmax and Wmin are both random numbers 

representing the initial weight and the final weight 

respectively.   

In (1) the first term indicates the current velocity of the 

particle, and the second term represents the cognitive part 

of the PSO where the particle changes its velocity based on 

its own thinking and memory. The third term represents the 

social part of the PSO where the particle changes its 

velocity based on the social-psychological adaptation of 

this knowledge. 

 

3.2 Problem formulation 

 

The total expected cost, which is the expectation value 

of summation of MC, RC, GC and OC, is shown in (5) 

 
[ { ( ) ( )}]J E MC RC GC PG OC LC

m m k i
m NE m NE k NG i NLall years

= + + +∑ ∑ ∑ ∑

∈ ∈ ∈ ∈
∑

 

  (5) 

 

. .

k

s t

PG LC PD
i i

k NG i NL i NL

+ =

∈ ∈ ∈

∑ ∑ ∑      (6) 

 min max
PG PG PG≤ ≤            (7) 

 0 LC PD≤ ≤                (8) 

 ( )
max

LF S LF
j
≤            (9) 

 

Here, GC is evaluated the function of the electrical 

output of each generator and the OC is calculated using 

amounts of load curtailment. PGk is the electrical output of 

k-th generator and LCi is amounts of load curtailment of i-

th load. Power balance constraint is shown in (6). Eq. (7) 

and (8) are generation limits and load curtailment limits 

respectively. In (9), LF(Sj) is the line flow vector for the j-

th system state Sj and this equation express line capacity 

limit. The RCm and MCm are the repair cost and 

maintenance cost of m-th equipment respectively. 

 

 Minimize J(P)               (10) 

                P∈Θ            

 

In (10), the decision vector, P, minimizes the total 

expected cost. This decision vector depicts the optimal 

maintenance strategy for the equipment. 

 

3.3 Particle representation 

 

It is crucial to appropriately encode the particles of the 

population in the PSO in order to find the optimal 

maintenance strategy. The maintenance strategy of each 

pieces of equipment is chosen to represent the particle 

position in each dimension, and the positions in different 

dimensions constitute a particle, which is a candidate 

solution for the target problem. The position in each 

dimension is real-coded. The i-th particle Pi is represented 

as follows: 
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Pi=(Pi1, Pi2, Pi3, … Pik, … PiL)   i=1,2, 3……..PS     

  (11) 

 

where L is the total piece count of the equipment in the 

transmission system, Pik is the maintenance strategy of the 

k-th equipment in the i-th particle. Therefore, the number 

of dimensions for the population is PS×L. 

For example, say there are eighteen pieces of equipment. 

Six of them are found in the overhead line, which has the 

state model shown in Fig. 2, three of them are found in the 

underground cable and the rests are for the insulator. The 

dimension of each particle, L, should be eighteen; the 

search space of the overhead line is [0, 1, 2, 3], the search 

space of the underground cable is [0, 1, 2] and the search 

space of the insulator is [0, 1]. 0 represents not doing any 

equipment maintenance, 1 means doing weak maintenance 

due to the state of the equipment being D1, 2 indicates 

carrying out strong maintenance due to the state of 

equipment being D2, similarly, 3 represents even stronger 

maintenance due to the state of equipment being D3.   

If the i-th decision vector (particle) is shown in Fig. 4 

[2,0,3,1,3,3,1,1,1,0,0,0,1,1,1,0,1,0], the first piece of 

equipment needs strong maintenance only when in the D2 

state. The second one does not need any maintenance. The 

third one has a stronger maintenance that is carried out 

only when its state is D3. The fourth one needs to perform 

a weak maintenance action when the state is D1. Similarly, 

the maintenance strategies of the other pieces of equipment 

are represented by its respective particle. 

 

 

 

Fig. 4. The example of i-th particle 

  

 

3.4 Algorithm step 

 

Step 1. Randomly initialize the particles of the 

population and iteration counter (iter=0). Note that the 

velocity and position of each particle needs to be initialized 

in such a manner that each candidate solution (particle) 

locates within the feasible search space given by (3). Since 

the maintenance strategy particles are integers, their de-

normalized value is rounded to nearest integer to determine 

the actual value. 

 

Step 2. The procedure for the fitness function of each 

particle Pi with a state transition pattern used for the 

calculation of the total expected cost given by (5) is: 

i) Specify the state of all the equipment by the grade of 

their deterioration.  

ii)  Estimate the failure patterns and the duration of the 

equipment residing in its present state 

chronologically using the sequential Monte Carlo 

Simulation [15]. For all of the equipment, random 

numbers are generated, and the time-to-state 

transition time and repair time are calculated 

chronologically. The duration of each piece of 

equipment for the present state is assumed to be 

distributed exponentially and to be expressed by the 

cumulative distribution function (CDF(t)) as shown 

in (12). 

 

 ( ) 1 exp( )CDF t tλ= −          (12)        

 

Where t is the transition time and λ (λ1, λ2, λ3, λ4) is the 

transition rate. The random variable T is given by:  

 

 1/ ln(1 )T Rλ= − −        (13) 

 

where R is a uniformly distributed random number [0, 1].   

 

iii) Transit the state of all of the equipment based on the 

derived failure patterns in a given time span. 

iv) Calculate the total expected cost for i-th particle (Pi) 

in a given time span using the state of the equipment 

and the maintenance decision vector of the 

equipment. If the decision vector (particle Pi) is like 

that shown in Fig. 4, the MC is applied to the total 

expected cost each time the state of the first 

equipment transits to the D2 state, the state of the 

third one goes to the D3 state and the state of the 

fourth one transits to D1, based on the failure pattern. 

For the second component, the maintenance should 

be skipped only in accordance with the decision 

vector; otherwise it will increase the probability of 

equipment failure and probably cause a load 

curtailment. After applying the required maintenance, 

the RC, OC and GC are calculated using the system 

condition and the probability of failures. 

 

Finally, the total expected cost is calculated. If there is 

no equipment failure in the transmission system, the MC 

and GC are added to the total expected cost. The MC 

differs depending on the methods, which vary with the 

deterioration states. If any equipment breaks down, but 

doesn’t cause a load curtailment, the RC and GC are 

attached to the total expected cost. When a couple of 

equipment failures occur, causing a load curtailment, the 

RC, OC and GC are applied to the total expected cost. 

 

v) Repeat ii)~iv) according to the population size (PS). 

 

The process of evaluating the total expected cost of each 

particle is portrayed in Fig. 5.  
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Fig. 5. The process of evaluating the total expected cost of 

each particle  

 

 

Step 3. Compare the total expected cost of Pbest with 

the total expected cost of the current particle. If the total 

expected cost of the current particle is better than the total 

expected cost of Pbest, then set Pbest to the current 

position Pi. 

Step 4. The best value among all the Pbest value, Gbest, 

is identified. 

Step 5. New velocities for all of the dimensions in each 

particle are calculated using (1). The maximum velocity 

limit in the k-th dimension is computed as follows: 

  

 
max min

max
P P
k kV

k Per

−
=        (14)       

where Per is the chosen number of intervals in the k-th 

dimension. For all the examples tested using the PSO, Vk
max 

was set at 10-20% of the dynamic range of the variable on 

each dimension.        

Step 6. The position of each particle is updated using (2). 

Step 7. The time counter is updated iter=iter+1. 

Step 8. If the number of iterations exceeds its maximum 

(itermax) then go to Step 9. Otherwise, go to Step 2.  

Step 9. Output the particle with the minimum total 

expected cost in the last generation. This particle includes 

the optimal maintenance strategy for all of the studied 

equipment.  

The step by step procedure used to find the optimal 

maintenance strategies for the equipment and the minimum 

total expected cost is depicted by the flowchart seen in Fig. 

6. 

 

 

Fig. 6. The procedure to find optimal maintenance 

strategies with the PSO 

 

 

4. Case Study 

 

The effectiveness of the proposed maintenance strategy 

was demonstrated using an IEEE 9-bus system. In Fig. 7, 1 

to 9 are the bus numbers, ①~③ represent the underground 

cable and ④~⑨ indicate the overhead line number. The 

insulators are also named ①~⑨. In reality, many 

insulators are installed between two buses; however only 

one insulator is assumed in order to simplify this study.  

Any failure in the three components causes a 
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transmission line disconnection between two buses. The 

simulation data (bus data, line parameter, transition rate, 

repair rate, generation cost, maintenance cost, and outage 

cost) is shown in Table 4 to Table 9. Table 4 shows the bus 

data and Table 5 gives the line parameter. Table 6 and 

Table 7 show the transition rates and repair rates for the 

equipment respectively. Table 8 shows the generation cost 

per generator and Table 9 represents the maintenance cost 

and the outage cost. 

This system has six lines, three underground cables and 

nine insulators. Since the underground cables have 2 

deterioration states, the overhead lines have 3 deterioration 

states and the state of the insulators is expressed by 1 

deterioration state, the dimension of each decision vector 

(particle) is 18. The initial state of the equipment is shown 

in Table 10.  

The convergence characteristics for the PSO are shown 

in Fig. 8. 

 

The parameters used are 

   Population size (Ps): 60   

   Generation number (itermax): 500 

   Inertia weight W is set by Eq. (4),  

 

Where Wmax=0.9 and Wmin=0.4 

 

Fig. 7. IEEE 9-bus system 

 

Table 6. Transition rates for the equipment 

 Transition rate (f/year) 

 1λ  2λ  3λ  4λ  

Line 0.01 0.01 0.02 0.04 

Cable 0.005 0.005 0.008 - 

Insulator 0.02 0.04 - - 

 

Table 7. Repaired rates for the equipment 

 Repair rate (f/year) 

 µ1 µ2 µ3 µ 

Line 0.0014 0.0014 0.0027 0.0027 

Cable 0.0014 0.0014 - 0.0027 

Insulator 0.0014 - - 0.0014 

 

Table 8. The generation cost per generator 

Generator 
PGmin 

(MW) 

PGmax 

(MW) 

GeneratorCost 

(k-KRW/MW) 

G1 10 250 0.11PG2+5PG+150 

G2 10 300 0.085PG2+1.2PG+600 

G3 10 270 0.1225PG2+PG+335 

 

Table 9. The maintenance cost and the outage cost 

Maintenance Cost(k-KRW) 

 M1 M2 M3 Repair 

Line 1000 2000 3000 5000 

Cable 3000 5000 - 8000 

Insulator 500 - - 3000 

Outage Cost(k-KRW/MWh)=100 

 

Table 10. The initial state of equipment 

Equipment number 
Initial 
state 

Equipment number 
Initial 
state 

Underground cable ① D1 Insulator ① N 

Underground cable ② D1 Insulator ② N 

Underground cable ③ N Insulator ③ D1 

Overhead line ④ D2 Insulator ④ D1 

Overhead line ⑤ D2 Insulator ⑤ N 

Overhead line ⑥ D3 Insulator ⑥ N 

Overhead line ⑦ D3 Insulator ⑦ D1 

Overhead line ⑧ D1 Insulator ⑧ D1 

Overhead line ⑨ D1 Insulator ⑨ D1 

 

 

 

Table 4. The bus data for the IEEE 9-bus system 

Bus Number Type PG(MW) PL(MW) 

1 Slack 0 0 

2 Generator 163 0 

3 Generator 85 0 

4 Load 0 0 

5 Load 0 125 

6 Load 0 90 

7 Load 0 0 

8 Load 0 100 

9 Load 0 0 

 

Table 5. The line parameter for the IEEE 9-bus system 

From To R X LFmax(MW) 

4 1 0 0.0576 250 

7 2 0 0.0625 250 

9 3 0 0.0586 150 

7 8 0.0085 0.072 300 

9 8 0.0119 0.1008 150 

7 5 0.032 0.161 250 

9 6 0.039 0.17 250 

5 4 0.01 0.085 250 

6 4 0.017 0.092 250 
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Maximum velocity Vmax is set by Eq. (14) where Per=10                                              

Acceleration constant c1=c2=2 

 

The x-axis represents the iteration number, and the y-

axis represents the total expected cost. The minimum total 

expected cost is 1,370,774,395.6 k-KRW over a 30 year 

time span.  

Table 11 shows the optimal maintenance strategy 

selected by the PSO, the failure frequency and the 

calculation time for the 30 simulation years. It shows that 

our method minimizes the total expected cost. This table 

shows the maintenance plan for all of the equipment. The 

PSO process took 265.62 seconds to converge to the 

optimal solution. 

The optimal maintenance plan in the IEEE 9-bus system 

is suggested from the decision vector shown Table 11. For 

example, the optimal maintenance plan for cable ① is [Do 

M2], meaning that strong maintenance is performed 

whenever its state becomes D2. Stronger maintenance is 

executed for overhead line ⑨ [Do M3] when its state goes 

to D3. The maintenance strategy in which equipment is 

repaired after its failure is adopted for underground cable 

③ and insulators ⑤, ⑥, ⑦ and ⑧. When maintenance 

actions are performed as prescribed by Table 11, the total 

expected cost is 1,370,774,395.6 k-KRW and equipment 

failure will occur once at insulator ⑦ over 30 years. 

Table 12 shows the total expected cost of the proposed 

maintenance strategy and compares it to the conventional 

maintenance strategies which use the time-based 

maintenance and the condition based maintenance methods. 

T-1, T-2, T-3, and T-v are the time based maintenance 

methods. T-1 represents the total cost of 1 year of 

maintenance for all of the equipment. T-2 and T-3 show the 

total costs for 2 years and 3 years maintenance, 

respectively. T-v indicates the total expected cost when the 

lines are maintained every 3 years, the insulators are done 

every 2 years and the towers are done every 5 years. C-1, 

C-2, C-3 and C-4 are the conditional based maintenance 

methods. The C-1 method prescribes that every overhead 

line has the stronger maintenance (M3) performed when 

the state of the overhead line is D3, every underground 

cable has weak maintenance (M1) if the underground cable 

state is D1 and every insulator has weak maintenance (M1) 

when the state of the insulator transits into D1. In a similar 

manner, the C-2 method prescribes that every overhead line 

 

Fig. 8. The convergence characteristics for the PSO 

 

Table 11. Optimal maintenance strategy for equipment in 

the IEEE 9-bus system 

Equipment When How 
Failure 

frequency 

Cable ① D2 
Strong 

Maintenance 
0 

Cable ② D1 
Weak  

Maintenance 
0 

Cable ③ Nothing Repair after failure 0 

Overhead line ④ D2 
Strong 

Maintenance 
0 

Overhead line ⑤ D1 Weak Maintenance 0 

Overhead line ⑥ D2 
Strong 

Maintenance 
0 

Overhead line ⑦ D1 Weak Maintenance 0 

Overhead line ⑧ D2 
Strong 

Maintenance 
0 

Overhead line ⑨ D3 
Stronger 

Maintenance 
0 

Insulator ① D1 
Weak  

Maintenance 
0 

Insulator ② D1 
Weak  

Maintenance 
0 

Insulator ③ D1 
Weak  

Maintenance 
0 

Insulator ④ D1 
Weak  

Maintenance 
0 

Insulator ⑤ Nothing Repair after failure 0 

Insulator ⑥ Nothing Repair after failure 1 

Insulator ⑦ Nothing Repair after failure 0 

Insulator ⑧ Nothing Repair after failure 0 

Insulator ⑨ D1 
Weak  

Maintenance 
0 

Total expected cost 
(J) 

1,370,774,395.6 
[k-KRW] 

 

Calculation time 265.62 [sec]  

 

Table 12. The Total expected cost of the proposed 

maintenance strategy, the TBM and CBM for the 

IEEE 9-bus system in 30-years 

Maintenance Strategy 
Total expected cost  

[k-KRW] 

J  
(proposed  

maintenance strategy) 

1,370,774,395 

J-1 1,373,390,895 

J-2 1,372,081,395 

J-3 1,371,644,895 

J-v 1,371,560,395 

C-1 1,370,795,895 

C-2 1,370,788,395 

C-3 1,370,791,895 

C-4 1,370,785,395 
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has weak maintenance (M1) performed, every underground 

cable has strong maintenance (M2) and every insulator has 

weak maintenance (M1). The C-3 method uses the (M2, 

M2, M1) maintenance strategy and C-4 uses (M3, M2, and 

M1).  

J is lower than the time-based maintenance (T-1, T-2, T-3 

and T-v) and the condition-based maintenance (C-1, C-2. C-

3, and C-4). This illustrates that the proposed maintenance 

strategy, which considers the equipment failure 

characteristics, the effects of equipment failure, and the 

maintenance on the system is more cost effective than the 

existing conventional maintenance strategies for all of the 

equipment. 

Fig. 9 and Fig. 10 show the comparison of the total 

expected cost between the proposed method and the time-

based and condition-based methods for different simulation 

durations, respectively. The normalized total expected cost 

(p.u.) value determined by the total expected cost derived 

by the proposed method is used. The plot shows that the 

total expected cost of the proposed method is always lower 

than the time-based maintenance cost (T-1, T-2, T-3 and T-

v) and the condition-based maintenance cost (C-1, C-2. C-3, 

and C-4).  

 

 

 

Fig. 9. The comparison of the total expected cost between 

the proposed method and the TBM. 

 

 

 

Fig. 10. The comparison of the total expected cost between 

the proposed method and the CBM. 

 

5. Conclusion 

 

A transmission system is composed of many different 

types of equipment, much of which was installed several 

decades ago, and so this equipment has deteriorated over 

time. Further deterioration may be unavoidable in the near 

future. it is essential to find a suitable equipment model 

and a well-organized maintenance strategy that uses this 

equipment model. This paper proposed the equipment 

model using the modified Markov chain to simulate the 

influence of the equipment deterioration and the 

operational state related to the increasing levels of 

equipment deterioration. Also we presented the RCM 

approach including this equipment model.  

The RCM approach of transmission systems is an 

optimization problem that has a large search space and 

large uncertainties. This paper investigates the application 

of the PSO on the RCM method for transmission systems 

that has different kinds of aged and aging equipment. A 

numerical example shows that the proposed the RCM 

method that uses the PSO is more cost-efficient than the 

traditional maintenance methods (TBM and CBM). This 

proposed RCM model can determine the optimal 

maintenance strategy for all of the studied equipment. 

 
 

Acknowledgements 
 

This work was supported by the National Research 

Foundation of Korea (NRF) grant funded by the Korea 

government (MEST) (No. 2011-0000889). This work was 

also supported by the Human Resources Development of 

the Korea Institute of Energy Technology Evaluation and 

Planning (KETEP) grant funded by the Korea government 

Ministry of Knowledge Economy (No. 20114030200030). 

 
 

References 

 

[1] A Grall, C B´erenguer, L Dieulle, “A condition-based 

maintenance policy for stochastically deteriorating 

systems”, Reliability Engineering & System Safety, 

pp.167-180,Vol. 76, 2002. 

[2] J. Nilsson, L. Bertling, “Maintenance management of 

wind power systems using condition monitoring 

systems-life cycle cost analysis for two case studies”, 

IEEE Transactions on Energy Conversion , pp.223-

229, Vol.22 , No.1, 2007. 

[3] D McMillan, G W Ault, “Condition monitoring 

benefit for onshore wind turbines: Sensitivity to 

operational parameters”, IET Renewable Power 

Generation, pp.60-72, Vol.2, No.1, 2008. 

[4] L. Bertling, R Allan, R. Eriksson, “A reliability-

centered asset maintenance method for assessing the 

impact of maintenance in power distribution system”, 



Jae-Haeng Heo, Jae-Kun Lyu, Mun-Kyeom Kim and Jong-Keun Park  

 823 

IEEE Transactions on Power Systems pp.75-82, 

Vol.20, No.1, 2005. 

[5] I P Siqueira., “Optimum reliability-centered main- 

tenance task frequencies for power system equip- 

ments”, 8th International Conference on PMAPS, 

2004.  

[6] P A Kuntz, R. D Christie, S S Venkata, “A reliability 

centered optimal visual inspection model for 

distribution feeders”, IEEE Transactions on Power 

Delivery, pp.718-723, Vol.16, No.1, 2001. 

[7] M E Beehler, “Reliability centered maintenance for 

transmission systems”, IEEE Transactions on Power 

Delivery, pp.1023-1028, Vol.12, 1997.  

[8] W Li, J Korczynski, “A reliability based approach to 

transmission maintenance planning and its 

application in BC Hydro system”, IEEE Transactions 

on Power Delivery, Vol.19, No.1, 2004. 

[9] G P Park, J H Heo, S S Lee, Y T Yoon, “Generalized 

reliability centered maintenance modeling through 

modified Markov chain in power system”, Journal of 

Electrical Engineering & Technology,  pp.25-31, 

Vol.6, No.1, 2011. 

[10] G Hoff, H G Kranz, “On-site dielectric diagnostics of 

power cables sing the Isothermal Relaxation Current 

Measurements”, IEEE/PES Panel on Diagnostic 

Measurement Techniques for Power Cables, 2000. 

[11] J Kennedy, R Eberhart, “Particle swarm optimization”, 

Proceedings of IEEE conference on neural networks 

Piscataway NJ, pp.1942-1948, Vol.4, 1998. 

[12] R Eberhart, Y Shi, “Particle swarm optimization: 

developments, applications and resources”, Procee- 

dings of the Congress Evolutionary Computation, 

pp.81-86, Vol.1, 2001. 

[13] K Y Lee, M A El-sharkawi, “Modern Heristic  

Optimization Technique with Applications to Power 

Systems”, IEEE Power Engineering Society (02TP160), 

2002. 

[14] H Yoshida, K Kawata, Y Fukuyama, S. Takayama, Y. 

Nakanishi, “A particle swarm optimization for reactive 

power and voltage control considering voltage 

security assessment”, IEEE Transactions on Power 

System, pp.1232-1239, Vol.15, 2000. 

[15] R Billinton, R N Allan. Reliability Evaluation of 

Power Systems, Plenum Press, pp. 400-405.  

 

 

Jae-Haeng Heo was born in Korea in 

1978. He received his B.S. degree in 

Electrical Engineering from Dankook 

University, Seoul, Korea in 2005 and 

his M.S. degree in Electrical Engi- 

neering from Seoul National University, 

Seoul, Korea. He is currently working 

on his Ph.D. course in the Department 

of Electrical Engineering at Seoul National University. His 

research field of interest includes power system reliability. 

Jae-kun Lyu was born in Korea, on 

1982. He received the B.S. degree in 

electrical engineering from Shinshu 

University, Nagano, Japan in 2006. 

Currently he is working on the Inte- 

grated Master's and Doctor's Course in 

the Department of Electrical Engi- 

neering at Seoul National University. 

His research field of interest includes power system 

operation and reliability, renewable energy integration. 

 

 

Mun-Kyeom Kim was born in Korea, 

on 1976. He received B.S. degree in 

Electrical Engineering from Korea 

University, Seoul, Korea in 2004 and 

M.S. and Ph.D. degrees in Electrical 

Engineering from Seoul National Uni- 

versity, Seoul, Korea in 2006 and 2010, 

respectively. He worked as a post-doc 

in the institute of information technology in the department 

of electrical engineering at Seoul National University.  He 

is currently a assistant professor in the Department of 

Electrical Engineering, Dong-A University, Busan, Korea 

in 2011. His research interests include the electric power 

network economics, power system reliability, and the real-

time market design in smart grid 

 

 

Jong Keun Park was born in Republic 

of Korea in 1952. He received B.S. 

degree in electrical engineering from 

Seoul National University, Korea in 

1973 and his M.S. and Ph.D. degrees in 

electrical engineering from The Uni- 

versity of Tokyo, Japan in 1979 and 

1982, respectively. He worked as a 

Researcher at the Toshiba Heavy Apparatus Laboratory in 

1982. He was a Visiting Professor with the Technology and 

Policy Program and Laboratory for Electromagnetic and 

Electronic Systems, Massachusetts Institute of Technology, 

Cambridge, in 1992. He is currently a Professor in the 

School of Electrical Engineering, Seoul National Uni- 

versity. He is a senior member of the Institute of Electrical 

and Electronics Engineers (IEEE) and a fellow of the 

Institution of Electrical Engineers (IEE) and a member of 

the National Academy of Engineering of Korea and the 

Korean representative of the study committee SC5 

“Electricity Markets and Regulation” in CIGRE. Also he 

was a President of Korean Institute of Electrical Engineers 

(KIEE) in 2010. 

 

 

 


