DOI QR코드

DOI QR Code

Reliability-guaranteed multipath allocation algorithm in mobile network

  • Jaewook, Lee (Network Research Division, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Haneul, Ko (The Department of Electronic Engineering, Kyung Hee University)
  • Received : 2022.05.23
  • Accepted : 2022.10.21
  • Published : 2022.12.10

Abstract

The mobile network allows redundant transmission via disjoint paths to support high-reliability communication (e.g., ultrareliable and low-latency communications [URLLC]). Although redundant transmission can improve communication reliability, it also increases network costs (e.g., traffic and control overhead). In this study, we propose a reliability-guaranteed multipath allocation algorithm (RG-MAA) that allocates appropriate paths by considering the path setup time and dynamicity of the reliability paths. We develop an optimization problem using a constrained Markov decision process (CMDP) to minimize network costs while ensuring the required communication reliability. The evaluation results show that RG-MAA can reduce network costs by up to 30% compared with the scheme that uses all possible paths while ensuring the required communication reliability.

Keywords

Acknowledgement

This research was supported by the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (no. 2020-0-00974, Development of ultrareliable and low-latency 5G+ core network and TSN switch technologies).

References

  1. P. Popovski, K. F. Trillingsgaard, O. Simeone, and G. Durisi, 5G wireless network slicing for EMBB, URLLC, and MMTC: A communication-theoretic view, IEEE Access 6 (2018), 55765-55779. https://doi.org/10.1109/access.2018.2872781
  2. 3GPPTS, Procedures for the 5G System (5GS). 23.502, version 17.4.0, Mar. 2022.
  3. 3GPP TR 23.700-53, Study on access traffic steering, switch and splitting support in the 5G System (5GS) architecture; Phase 3. version 0.2.0, Apr. 2022.
  4. 3GPP TS 23.725, Study on enhancement of Ultra-Reliable Low-Latency Communication (urllc) support in the 5G Core network (5gc). version 16.2.0, Jun. 2019.
  5. 3GPP TS 23.501, System architecture for the 5G System (5GS). version 17.4.0, Mar. 2022.
  6. Y. Kang, S. Lee, S. Gwak, T. Kim, and D. An, Time-sensitive networking technologies for industrial automation in wireless communication systems, MDPI Energies 14 (2021), no. 15, 4497.
  7. N. H. Mahmood, M. Lopez, D. Laselva, K. Pedersen, and G. Berardinelli, Reliability oriented dual connectivity for URLLC services in 5G new radio, (Proceedings of ISWCS 2018, Lisbon, Portugal), 2018, pp. 1-6.
  8. J. Rao and S. Vrzic, Packet duplication for URLLC in 5G dual connectivity architecture, (Proceedings of IEEE WCNC 2018, Barcelona, Spain), 2018, pp. 1-6.
  9. J. Rao and S. Vrzic, Packet duplication for urllc in 5G: Architectural enhancements and performance analysis, IEEE Network 32 (2018), 32-40.
  10. N. H. Mahmood, A. Karimi, G. Berardinelli, K. I. Pedersen, and D. Laselva, On the resource utilization of multi-connectivity transmission for URLLC services in 5G new radio, (Proceedings of IEEE WCNCW 2019, Marrakech, Morocco), 2019, pp. 1-6.
  11. D. Guzman, R. Schoeffauer, and G. Wunder, Predictive network control in multi-connectivity mobility for urllc services, (Proceedings of IEEE CAMAD 2019, Limassol, Cyprus), 2019, pp. 1-7.
  12. T. J. Tan, F. L. Weng, W. T. Hu, J. C. Chen, and C. Y. Hsieh, A reliable intelligent routing mechanism in 5G core networks, (Proceedings of ACM MOBICOM 2020, 2020), pp. 1-3.
  13. A. A. Barakabitze, L. Sun, I. H. Mkwawa, and E. Ifeachor, A novel qoe-centric sdn-based multipath routing approach for multimedia services over 5g networks, (Proceedings of IEEE ICC 2018, MO, USA), 2018, pp. 1-7.
  14. L. Qu, C. Assi, M. J. Khabbaz, and Y. Ye, Reliability-aware service function chaining with function decomposition and multipath routing, IEEE Trans. Netw. Serv. Manag. (TNSM) 17 (2020), 835-848. https://doi.org/10.1109/tnsm.2019.2961153
  15. S. Sevgican, M. Turan, K. Gokarslan, H. B. Yilmaz, and T. Tugcu, Intelligent network data analytics function in 5g cellular networks using machine learning, J Commun Netw (JCN) 22 (2020), no. 3, 269-280. https://doi.org/10.1109/jcn.2020.000019
  16. 3GPP TS 23.288, Architecture enhancements for 5G System (5GS) to support network data analytics services. version 17.4.0, Mar. 2022.
  17. E. Altman, Constrained Markov decision process, Chapman & Hall, 1994.
  18. J. Kim, J. Lee, H. Ko, T. Kim, and S. Pack, Space mobile networks: Satellite as core and access networks for B5G, IEEE Commun. Mag. 60 (2022), 58-64.
  19. J. Lee, H. Ko, and S. Pack, Adaptive deadline determination for mobile device selection in federated learning, IEEE Trans. Vehic. Technol. (TVT) 71 (2022), 3367-3371. https://doi.org/10.1109/TVT.2021.3136308
  20. J. Lee, H. Ko, and S. Pack, Trajectory-aware edge node clustering in vehicular edge clouds, (Proceedings of IEEE CCNC 2019, Las Vegas, USA), 2019, pp. 1-4.