• Title/Summary/Keyword: Transmission Tower

Search Result 276, Processing Time 0.038 seconds

Study on the reform case of safe distance between overhead transmission conductor of front steel pole in substation (변전소 인입 강관주 선간거리 개선사례 분석)

  • Lee, Jai-Wook;Hwang, Kwang-Su;KESCO, Jae-Kwam;Choi, Jong-Soo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.369-373
    • /
    • 2008
  • This case analyze the point of trouble and reform processing construction on input design to resolve the problem for setting tower in front of narrow base at the 154kV OO Transmission Line substaion. Hereafter the input design are presented for the basic reference data which the case a point of trouble and reform contents, input design of special shape tower and the foundation on substation input design cannot be setted by standard type of tower because of narrow base and cannot keep clerance overhead transmission conductor input to the substion.

  • PDF

A review of the transmission tower-line system performance under typhoon in wind tunnel test

  • Li, Xianying;Yao, Yu;Wu, Hongtao;Zhao, Biao;Chen, Bin;Yi, Tao
    • Wind and Structures
    • /
    • v.29 no.2
    • /
    • pp.87-98
    • /
    • 2019
  • As a regenerated turbulent wind field process, wind tunnel test has proven to be a promising approach for investigating the transmission tower-line system (TTLS) performance in view of experimental scaled models design, simulation techniques of wind field, and wind induced responses subjected to typhoon. However, the challenges still remain in using various wind tunnels to regenerate turbulent wind field with considerable progress having been made in recent years. This review paper provides an overview of the state-of-the-art of the wind tunnel based on active or passive controlled simulation techniques. Specific attention and critical assessment have been given to: (a) the design of experimental scaled models, (b) the simulation techniques of wind field, and (c) the responses of TTLS subjected to typhoon in wind tunnel. This review concludes with the research challenges and recommendations for future research direction.

Fault Line Detection Methodology for Four Parallel Lines on the Same Tower

  • Li, Botong;Li, Yongli;Yao, Chuang
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1217-1228
    • /
    • 2014
  • A method for faulted line detection of four parallel lines on the same tower is presented, based on four-summing and double-differential sequences of one terminal current. Four-summing and double-differential sequences of fault current can be calculated using a certain transformation matrix for parameter decoupling of four parallel transmission lines. According to fault boundary conditions, the amplitude and phase characteristics of four-summing and double-differential sequences of fault current is studied under conditions of different types of fault. Through the analysis of the relationship of terminal current and fault current, a novel methodology for fault line detection of four parallel transmission line on the same tower is put forward, which can pick out the fault lines no matter the fault occurs in single line or cross double lines. Simulation results validate that the methodology is correct and reliable under conditions of different load currents, transient resistances and fault locations.

The Influence of Ground Vibration Caused by Pile Driving on Power Line Tower Foundation (항타 진동이 송전탑 기초에 미치는 영향 연구)

  • Park, Jung-Bong
    • Explosives and Blasting
    • /
    • v.27 no.2
    • /
    • pp.42-47
    • /
    • 2009
  • Ground vibrations caused by pile driving or explosive blasting can affect the stability of power line tower and its foundation. Because the characteristics of ground vibrations generally depend on the distances from the blast, the ground vibrations should be controlled by taking the distance into account. In this study, ground vibration levels were measured at the foundation of a power line tower and on ground surface adjacent to the tower. The relationships between the dominant frequencies of the ground vibrations that were measured at both locations were comparatively investigated.

Suggestion of Reasonable Analysis Model for Steel Transmission Tower Based on KEPCO Design Specifications (송전철탑 설계기준을 반영한 345kV급 송전철탑의 합리적인 구조해석모델 제안)

  • Chang, Jin Won;Kim, Seung Jun;Park, Jong Sup;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.4
    • /
    • pp.367-381
    • /
    • 2007
  • A transmission tower was designed using the structural methodology to assume a simple truss behavior. However, there is a big difference between a simple truss behavior and a real one. A suitable explanation of structural stability is that it is a semi-rigid connection and not the assumed hinged connection. This study proposes an alternative structural-analysis modeling strategy for the transmission tower design. The element models that were considered were the truss element model, the beam element model, and the combined beam-truss element model. This study includes linear static analysis, free-vibration analysis, and elastic buckling analysis with respect to the design load. The results of the analysis indicate that the axial forces, axial stresses, and maximum displacements of the three analytical models are very similar. However, the bending moments and stresses of the beam element model and of the combined beam-truss element model are significantly high. The results of the free-vibration and elastic buckling analyses show that the beam-truss model can be conservatively used for the transmission tower design.

A Study on the Transmission Tower Foundation Design and Construction Method - A Focus of Cylindrical Foundation - (가공 송전 철탑기초 설계 및 시공 방법 연구 - 심형기초를 중심으로 -)

  • Jang, Suk-Han;Kim, Hee-Kwang;Lee, Kang-Hyeon;Han, Kyung-Soo;Ham, Bang-Wook;Chung, Ki-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1031-1034
    • /
    • 2007
  • Electric transmission lines pass through a variety of area. Foundation supporting the conductors and tower are selected properly in accordance with external load, for example dead load, wind load, snow load, construction load etc, and topography and geology condition. Typical types of foundation are as follows: pad foundation for small load and hard soil or rock in mountainous area, pile foundation for medium or large load and soft soil in plain field area. This paper introduced cylindrical foundation design & construction for large load and mountainous area. This foundation failure mode against pulling-out show splitting failure by tensile force toward circumferential direction.

Overvoltage Analysis and Air Clearance Design of 345kV/154kV Transmission Tower (345kV/154kV 계통 과전압 해석과 공기절연간격 산정)

  • Shim, E.B.;Woo, J.W.;Kwak, J.S.;Yoon, S.H.;Kim, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.449-451
    • /
    • 2001
  • This paper described the switching overvoltage analysis on the 345kV and 154kV transmission system by EMTP(Electromagnetic transient Program) for the enactment of current insulation design standards of KEPCO. The air clearance design of current transmission tower was reviewed and revised by the calculated result, considering swing angle for the each type of insulator string by the wind velocity.

  • PDF

A Study on the Lightning Surge Protection Methods on Transmission System and Substation (송전계통 및 변전소 뇌서지 보호방안 연구)

  • Kim Jae-Kwan;Jung Chae-Kyun;Lee Jong-Beom;Cho Han-Goo;Seo Je-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.6
    • /
    • pp.279-285
    • /
    • 2005
  • The lightning causes the damage of power system equipments as well as large power failure. Therefore, the insulation design should be established not only to decrease the damage of the facilities itself but also to increase the reliability of electric power system. This paper describes the useful way applying underbuilt ground wire and guy wire in transmission tower that safely protect the substation equipments. One or more shield wires under the phase conductor will not intercept lightning stroke, but they may improve reduce lightning voltages almost as effectively as if they were above the phase conductors. And the guy wires will mitigate the tower surge response. These would not only reduce backflashover possibility but also minimize crest and duration of surges entering the substation. EMTP is used to analyze the efficiency of the proposed methods.

Development and Operation of Durability Mock-Up Test Facilities for Offshore Electricity Structures (해상 전력구조물 내구성 실증 실험장 구축 및 운영)

  • Pang Gi-Sung;Han Sang-Mook;Song Young-Chul;Kwon Byeong-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.265-268
    • /
    • 2005
  • This paper discusses a strategy and status for development and operation of durability mock-up test facilities for offshore structures. The strategy is examplified and facilitated using an offshore transmission tower crossing the West sea and the Shihwha lake, which was designed and constructed 345kV T/L lines transmitting power from Yeong-Heung fossil power plant to Seoul metropolitan area. Various data for corrosion protection, aging, life-prediction of concrete and steel offshore structures can be obtained using the proposed mock-up test facility. Acquired data will be used for further research on durability, life-prediction, and retrofit of structures. It is important to maintain the safety of 345 kV Yeong-Heung transmission line crossing the Shihwha lake because the offshore structure is one of the critical electric facilities transmitting large power to the metropolitan area. Operation of the offshore transmission tower mock-up is expected to make a significant contribution to stable power supply.

  • PDF

Validation of Some Protection Guidelines for Neighboring Pipelines against Fault Currents from Power Transmission Tower

  • Lee, Seong-Min;Song, Hong-Seok;Kim, Young Geun
    • Corrosion Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.77-81
    • /
    • 2007
  • Fault current can be discharged from power transmission tower due to lightning or inadvertent contact of crane, etc. Pipelines in proximity to either the source of the ground fault or the substation grounding grid may provide convenient conductive path for the fault current to travel. Inappropriate measures to the neighboring pipelines against the fault current may cause severe damages to the pipes such as coating breakdown, arc burn, puncture, loss in wall thickness, or brittle heat-affected zone. Like inductive and conductive AC coupling, steadily induced fault current right after the coating breakdown can lead to corrosion of the pipeline. In this work, some protection guidelines against fault currents used in the field have been validated through the simulation and analytical method.