• Title/Summary/Keyword: Transmission Angle

Search Result 600, Processing Time 0.022 seconds

Preparation and Characterization of Plasticized Poly(vinyl chloride)-g-Poly(oxyethylene methacrylate) Graft Copolymer Electrolyte Membranes (가소화된 Poly(vinyl chloride)-g-Poly(oxyethylene methacrylate) 가지형 고분자 전해질막 제조 및 분석)

  • Seo, Jin-Ah;Koh, Jong-Kwan;Koh, Joo-Hwan;Kim, Jong-Hak
    • Membrane Journal
    • /
    • v.21 no.3
    • /
    • pp.222-228
    • /
    • 2011
  • Poly(vinyl chloride)-g-poly(oxyethylene methacrylate) (PVC-g-POEM) graft copolymer was synthesized via atom transfer radical polymerization (ATRP) and used as an electrolyte for electrochromic device. Plasticized polymer electrolytes were prepared by the introduction of propylene carbonate (PC)/ethylene carbonate (EC) mixture as a plasticizer. The effect of salt was systematically investigated using lithium tetrafluoroborate ($LiBF_4$), lithium perchlorate ($LiClO_4$), lithium iodide (LiI) and lithium bistrifluoromethanesulfonimide (LiTFSI). Wide angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) measurements showed that the structure and glass transition temperature ($T_g$) of polymer electrolytes were changed due to the coordinative interactions between the ether oxygens of POEM and the lithium salts, as supported by FT-IR spectroscopy. Transmission electron microscopy (TEM) showed that the microphase-separated structure of PVC-g-POEM was not greatly disrupted by the introduction of PC/EC and lithium salt. The plasticized polymer electrolyte was applied to the electrochromic device employing poly(3-hexylthiophene) (P3HT) conducting polymer.

Formation of $CoSi_2$ Film and Double Heteroepitaxial Growth of $Si/epi-CoSi_2/Si$(111) by Solid Phase Epitaxy (고상 에피택시에 의한 초박막 $CoSi_2$ 형성과 $Si/epi-CoSi_2/Si$(111)의 이중헤테로 에피택셜 성장)

  • Choi, Chi-Kyu;Kang, Min-Sung;Moon, Jong;Hyun, Dong-Geul;Kim, Kun-Ho;Lee, Jeong-Yong
    • Korean Journal of Materials Research
    • /
    • v.8 no.2
    • /
    • pp.165-172
    • /
    • 1998
  • Epitaxial ultrathin films of $CoSi_2$ and double heteroepitaxial structure of Si/$CoSi_2$/Si(lll) were prepared on Si(111)-$7\times{7}$ substrate by in situ solid-phase epitaxy in a ultrahigh vacuum(LHV). The phase, chemical composition, crystallinity, and the microsructure of the Si/$CoSi_2$/Si(lll) interface were investigated by 2-MeV $^4He^{++}$ ion backscattering spectrometry, X-ray diffraction, and high-resolution transmission electron microscopy. The growth mode of the Co film was the Stransky-Krastanov type with texture when the substrate temperature was room temperature. A-type $CoSi_2$ ultrathin film was grown by deposition of about 50A Co on Si(ll1)-$7\times{7}$ substrate followed by in situ annealing at $700^{\circ}C$ for 10 min. The matching face relationships were $CoSi_2$[110]//Si[110] and $CoSi_2$(002)//Si(002) with no misorientation angle. The A-type $CoSi_2$/Si(lll) interface was abrupt and coherent. The best epi-Si/epi-$CoSi_2$2(A-type)/Si(lll) structure was obtained by deposition of Si film on the CoSii at $500^{\circ}C$ followed by in situ annealing at $700^{\circ}C$ for 10 min in UHV.

  • PDF

Preparation of PVdF Composite Nanofiber Membrane by Using Manganese-Iron Oxide and Characterization of its Arsenic Removal (망간-철 산화물을 이용한 PVdF 나노섬유복합막의 제조 및 비소 제거 특성 평가)

  • Yun, Jaehan;Jang, Wongi;Park, Yeji;Lee, Junghun;Byun, Hongsik
    • Membrane Journal
    • /
    • v.26 no.2
    • /
    • pp.116-125
    • /
    • 2016
  • This study described a synthesis of MF having a arsenic removal characteristics and the fundamental research was performed about the simultaneous removal system of both As(III) and As(V) ions with the composite nanofiber membrane (PMF) based on PVdF and MF materials for the water-treatment application. From the TEM analysis, the shape and structure of MF materials was investigated. The mechanical strength, pore-size, contact angle and water-flux analysis for the PMF was performed to investigate the possibility of utilizing as a water treatment membrane. From these results, the PMF11 showed the highest value of mechanical strength ($232.7kgf/cm^2$) and the pore-diameter of composite membrane was reduced by introducing the MF materials. In particular, their pore diameter decreased with an increase of iron oxide composition ratio. The water flux value of PMF was improved about 10 to 60% compared with that of neat PVdF nanofiber membranes. From the arsenic removal characterization of prepared MF materials and PMF, it was shown the simultaneous removal characteristics of both As(III) and (V) ions, and the MF01, in particular, showed the highest adsorption-removal rate of 93% As(III) and 68% As(V), respectively. From these results, prepared MF materials and PMF have shown a great potential to be utilized for the fundamental study to improve the functionality of water treatment membrane.

Mutual Authentication Method between Wireless Mesh Enabled MSAPs in the Next-generation TICN (차세대 전술정보통신체계에서의 무선 메쉬 MSAP 노드 간 상호 인증 기법)

  • Son, Yu-Jin;Bae, Byoung-Gu;Shon, Tae-Shik;Ko, Young-Bae;Lim, Kwang-Jae;Yun, Mi-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5B
    • /
    • pp.385-394
    • /
    • 2012
  • The tactical mobile communication network, which comprises a part of the next-generation Tactical Information and Communication Network (TICN), provides means of communication and control for Tactical Multi-Functional Terminals (TMFT) belonging to a Mobile Subscriber Access Point (MSAP). The next-generation of MSAP is capable of constructing a backbone network via LCTR and HCTR directional antennas. At the same time, WMN modules are used to create and manage a wireless mesh backbone. When directional antennas are used in mobile environments, seamless services cannot be efficiently supported as the movement of the node prevents the angle of the antenna to constantly match. Therefore, data communication through the wireless mesh networks is required to provide direct communication between mobile MSAPs. Accordingly, mutual authentication and data encryption mechanisms are required to provide reliable data transmission in this environment. To provide efficient mutual authentication between MSAP devices, the process of verifying a certificate of the other MSAP device through its own authentication server is required. This paper proposes mutual authentication mechanisms where the MSAP requiring authentication and the MSAP that permits it initiates low-cost and efficient authentication in a distributed way. More specifically, we propose a method of applying EAP-ELS (Extensible Authentication Protocol-Transport Layer Security) in the next-generation TICN.

Seismic Anisotropy Physical Modeling with Vertical Transversely Isotropic Media (VTI 매질의 탄성파 이방성 축소모형실험)

  • Ha, Young-Soo;Shin, Sung-Ryul
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.307-314
    • /
    • 2010
  • Although conventional seismic data processing is based on the assumption that the media are isotropic, the subsurface is often anisotropy in shale formation or carbonate with cracks and fractures. This paper presents the anisotropic parameter and seismic modeling in transversely isotropic media with a vertical symmetry axis using seismic physical modeling. The experiment was successfully carried out with VTI media, laminated bakelite material, using contact transducer of p and s-wave transmission. The variation of velocities with angle of incidence was clearly shown in anisotropic material. Comparing these velocities with the calculated phase velocities, the (P) and (S)-wave velocity observed in anisotropic material was a very good agreement with the calculated values. Anisotropic parameter ${\varepsilon}$, ${\delta}$, ${\gamma}$ was estimated by using Lame's constant calculated from the observed velocity. For the purpose of testing (S)-wave polarization, a birefringence experiment was carried out. The higher velocity was associated with the polarization parallel to the fracture, and the lower velocity was associated with the polarization perpendicular to the fracture.

Study on the Optimization of DMB Image Contents Production Method (DMB 영상콘텐츠 제작기법의 최적화에 대한 연구)

  • Lim, Pyung-Jong;Kim, Jong-Seo;Kwak, Hoon-Sung
    • Journal of Digital Contents Society
    • /
    • v.9 no.3
    • /
    • pp.399-412
    • /
    • 2008
  • The 21st century has been changed into a knowledge-oriented society, which means our society is more dependent on information and moves toward information. The mixing of broadcasting and co mmunication prevails and it makes possible a new type of broadcasting service. Depending on that, a broadcasting is being changed into a consumer-oriented service to satisfy the demands of consum ers in a new media age. It makes us attain to the personal media age to be possible interactive com munication unlike existing one-way transmission. As a result, new complex media are commercialize d and the instance is DMB. DMB is said 'my own TV' or 'TV in my own hands'. But it has limit t o retransmit existing broadcast programs. So hereafter, DMB broadcasting must be produced with co ntents suited its properties out of retransmitting existing contents. It is necessary to analyze exactly properties and service fields of DMB media to make an establish production direction of contents for DMB. This paper intends to suggest overall optimized image-contents production direction including appropriate program developments, a proper running time, visual expressions such as a camera angle and walking etc... DMB contents suited with its properties will give more familiarities to DMB users. Besides, DMB is expected to be a new culture watching broadcasting.

  • PDF

Variation in Depth Dose Data between Open and Wedge Fields for 6 MV X-Rays (6MV X선에 있어서 쇄기형 조사야와 개방 조사야 사이의 깊이 선량률의 차이)

  • U, Hong;Ryu, Sam-Uel;Park, In-Kyu
    • Radiation Oncology Journal
    • /
    • v.7 no.2
    • /
    • pp.279-285
    • /
    • 1989
  • Central axis depth dose data for 6 MV X-rays, including tissue maximum ratios, were measured for wedge fields according to Tatcher's equation. In wedge fields, the differences in magnitude which increased with depth, field size, and wedge thickness increased when compared with the corresponding open field data. However, phantom scatter correction factors for wedge fields differed less than $1\%$ from the corresponding open field factors. The differences in central axis percent depth dose between two types of fields indicated beam hardening by the wedge filter The deviation of percent depth doses and scatter correction factors between the effective wedge field and the nominal wedge field at same angle was negligible. The differences were less than $3.20\%$ between the nominal or effective wedge fields and the open fields for percent depth doses to the depth 7cm in $6cm{\times}6cm$ field. For larger $(10cm{\times}10cm)$ field size, however, the deviation of percnet depth doses between the nominal or effective wedge fields and the open fields were greater-dosimetric errors were $3.56\%$ at depth 7cm and nearly $5.30\%$ at 12cm. We suggest that the percent depth doses of individual wedge and wedge transmission factors should be considered for the dose calculation or monitor setting in the treatment of deep seated tumor.

  • PDF

A Study on Stabilization of Underwater TAS Winch System Deploy/Recover Operation Performance (수중용 TAS윈치 전개/회수 성능 안정화 방안에 관한 연구)

  • Chang, Ho-Seong;Cho, Kyu-Lyong;Hwang, Jae-Gyo;Lee, Sang-Yong;Kim, Yong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.472-482
    • /
    • 2019
  • This paper describes the stabilization of underwater TAS winch system Deploy/Recover operation performance. TAS winch installed on the stern of submarine performs to deploy/recover sensor, towing cable and rope tail which is deployed from the stern and separated from submarine itself. Also TAS winch provides transmission path of power to the sensor and data transmitting/receiving path which data are acquired from underwater environment like sound, depth and temperature. At the step of TAS winch evaluation test, sporadic standstill and rotating speed oscillation phenomenon were occurred. Winch motor provides the available torque to deploy/recover TAS and root cause analysis to the winch motor was done to find exact reason to sporadic malfunction. When winch motor was disassembled, eccentricity of rotor, slip-ring and the other composition part for winch motor were found. These might cause magnetic field distortion. To make TAS winch system more stable and block magnetic field distortion, this paper suggests methods to enhance fixing status installed in winch motor. For reliable data acquisition for TAS winch operation, the deploy/recover function of the improved type of TAS winch was verified in LBTS making similar condition with sea status. At the end of stage, improved type of TAS winch was tested on some functions not only deploy/recover function, but sustainability of TAS operation on specific velocity, steering angle of submarine in the sea trial. Improved type of TAS winch was verified in accordance with design requirement. Also, validity of suggested methods were verified by the sea trial.

A Study on the Improvement of the Control Circuit Design of Controllable Pitch Propeller (가변피치프로펠러의 제어회로 설계 개선에 관한 연구)

  • Kim, Dong-Young;Kang, Gu-Heon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.52-60
    • /
    • 2019
  • The control circuit of the CPP applied to FFX Batch-I and LST-II may be capable of generating a backward pitch even when the grounding phenomenon occurs in the other system. The purpose of this study was to improve the CPP control circuit to maintain the pitch even in the event of grounding. Since the CPP control circuit changes the propeller angle with the voltage difference input, it has a design structure that can be vulnerable if the input voltage fluctuates instantaneously. In order to solve the above problem, a terminating resistor is applied to the end of the control wire and a signal converter is applied between the control wires, as a way to improve the CPP control circuit design. In order to verify that there is no problem in improving the CPP control circuit design, the CPP pitch change control was tested in the actual sailing commissioning with LST-II. Since the command pitch value and the feedback pitch value are very similar to each other, it is confirmed that the CPP control circuit is suitable for the control signal transmission because there is no problem in transmitting the control signal.

A Comparison of the Effects of Silica and Hydroxyapatite Nanoparticles on Poly(ε-caprolactone)-Poly(ethylene glycol)-Poly(ε-caprolactone)/Chitosan Nanofibrous Scaffolds for Bone Tissue Engineering

  • Hokmabad, Vahideh Raeisdasteh;Davaran, Soodabeh;Aghazadeh, Marziyeh;Alizadeh, Effat;Salehi, Roya;Ramazani, Ali
    • Tissue Engineering and Regenerative Medicine
    • /
    • v.15 no.6
    • /
    • pp.735-750
    • /
    • 2018
  • BACKGROUND: The major challenge of tissue engineering is to develop constructions with suitable properties which would mimic the natural extracellular matrix to induce the proliferation and differentiation of cells. Poly(${\varepsilon}$-caprolactone)-poly(ethylene glycol)-poly(${\varepsilon}$-caprolactone) (PCL-PEG-PCL, PCEC), chitosan (CS), nano-silica ($n-SiO_2$) and nano-hydroxyapatite (n-HA) are biomaterials successfully applied for the preparation of 3D structures appropriate for tissue engineering. METHODS: We evaluated the effect of n-HA and $n-SiO_2$ incorporated PCEC-CS nanofibers on physical properties and osteogenic differentiation of human dental pulp stem cells (hDPSCs). Fourier transform infrared spectroscopy, field emission scanning electron microscope, transmission electron microscope, thermogravimetric analysis, contact angle and mechanical test were applied to evaluate the physicochemical properties of nanofibers. Cell adhesion and proliferation of hDPSCs and their osteoblastic differentiation on nanofibers were assessed using MTT assay, DAPI staining, alizarin red S staining, and QRT-PCR assay. RESULTS: All the samples demonstrated bead-less morphologies with an average diameter in the range of 190-260 nm. The mechanical test studies showed that scaffolds incorporated with n-HA had a higher tensile strength than ones incorporated with $n-SiO_2$. While the hydrophilicity of $n-SiO_2$ incorporated PCEC-CS nanofibers was higher than that of samples enriched with n-HA. Cell adhesion and proliferation studies showed that n-HA incorporated nanofibers were slightly superior to $n-SiO_2$ incorporated ones. Alizarin red S staining and QRT-PCR analysis confirmed the osteogenic differentiation of hDPSCs on PCEC-CS nanofibers incorporated with n-HA and $n-SiO_2$. CONCLUSION: Compared to other groups, PCEC-CS nanofibers incorporated with 15 wt% n-HA were able to support more cell adhesion and differentiation, thus are better candidates for bone tissue engineering applications.