Preparation and Characterization of Plasticized Poly(vinyl chloride)-g-Poly(oxyethylene methacrylate) Graft Copolymer Electrolyte Membranes

가소화된 Poly(vinyl chloride)-g-Poly(oxyethylene methacrylate) 가지형 고분자 전해질막 제조 및 분석

  • Seo, Jin-Ah (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Koh, Jong-Kwan (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Koh, Joo-Hwan (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Jong-Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 서진아 (연세대학교 화공생명공학과) ;
  • 고종관 (연세대학교 화공생명공학과) ;
  • 고주환 (연세대학교 화공생명공학과) ;
  • 김종학 (연세대학교 화공생명공학과)
  • Received : 2011.06.28
  • Accepted : 2011.08.03
  • Published : 2011.09.30

Abstract

Poly(vinyl chloride)-g-poly(oxyethylene methacrylate) (PVC-g-POEM) graft copolymer was synthesized via atom transfer radical polymerization (ATRP) and used as an electrolyte for electrochromic device. Plasticized polymer electrolytes were prepared by the introduction of propylene carbonate (PC)/ethylene carbonate (EC) mixture as a plasticizer. The effect of salt was systematically investigated using lithium tetrafluoroborate ($LiBF_4$), lithium perchlorate ($LiClO_4$), lithium iodide (LiI) and lithium bistrifluoromethanesulfonimide (LiTFSI). Wide angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) measurements showed that the structure and glass transition temperature ($T_g$) of polymer electrolytes were changed due to the coordinative interactions between the ether oxygens of POEM and the lithium salts, as supported by FT-IR spectroscopy. Transmission electron microscopy (TEM) showed that the microphase-separated structure of PVC-g-POEM was not greatly disrupted by the introduction of PC/EC and lithium salt. The plasticized polymer electrolyte was applied to the electrochromic device employing poly(3-hexylthiophene) (P3HT) conducting polymer.

Poly(vinyl chloride)-g-poly(oxyethylene methacrylate) (PVC-g-POEM) 가지형 공중합체를 원자전달라디칼 중합을 통해 합성하여 전기변색소자의 전해질에 적용하였다. 가소화된 고분자 전해질은 가소제로서 propylene carbonate (PC)/ethylene carbonate (EC) 혼합물을 도입하여 제조하였으며, Lithium tetrafluoroborate ($LiBF_4$), lithium perchlorate ($LiClO_4$), lithium iodide (LiI) and lithium bistrifluoromethanesulfonimide (LiTFSI)를 사용하여 염의 종류에 따른 영향을 조사하였다. 광각 x-선 산란(WAXS)과 시차주사 열량법(DSC) 측정 결과 고분자 전해질의 구조와 유리전이온도($T_g$)가 변하였고, 이는 POEM 내의 에테르의 산소와 리튬염 사이의 상호작용으로 인해 변했다는 것을 FT-IR 분광법을 통하여 확인하였다. 투과전자현미경(TEM) 측정 결과 PVC-g-POEM 가지형 공중합체의 미세상분리 구조가 PC/EC와 리튬염의 도입에도 변하지 않는 것을 관찰하였다. 가소화된 고분자 전해질은 poly(3-hexylthiophene) (P3HT) 전도성 고분자를 이용한 전기변색소자에 적용되었다.

Keywords

References

  1. N. Yoshimoto, O. Shimamura, T. Nishimura, M. Egashira, M. Nichioka, and M. Morita, "A novel polymeric electrolyte based on a copolymer containing self-assembled stearylate moiety for lithiumion batteries", Electrochem. Commun., 11, 481 (2009). https://doi.org/10.1016/j.elecom.2008.12.030
  2. H. Ko, J. Park, J. Choi, S. U. Kim, H. J. Kim, and Y. T. Hong, "Double-layered polymer electrolyte membrane based on sulfonated poly(aryl ether sulfone)s for direct methanol fuel cells", Membrane Journal, 19, 291 (2009).
  3. J. H. Kim, B. R. Min, J. Won, S. H. Joo, H. S. Kim, and Y. S. Kang, "Role of polymer matrix in polymer/silver complexes for structure, interactions, and facilitated olefin transport", Macromolecules, 36, 6183 (2003). https://doi.org/10.1021/ma034314t
  4. M.-J. Choi, C.-H. Shin, T. Kang, J.-K. Koo, and N. Cho, "A study on the organic/inorganic composite electrolyte membranes for dye sensitized solar cell", Membrane Journal, 18, 345 (2008).
  5. J. Reiter, O. Krejza, and M. Sedlarikova, "Electrochromic devices employing methacrylate-based polymer electrolytes", Sol. Energy Mater. Sol. Cells., 93, 249 (2009). https://doi.org/10.1016/j.solmat.2008.10.010
  6. A. Azens and C. G. Granqvist, "Electrochromic smart windows: energy efficiency and device aspects", J. Solid. State. Electrochem., 7, 64 (2003).
  7. S. Papaefthimiou, G. Leftheriotis, and P. Yianoulis, "Advanced electrochromic devices based on $WO_3$ thin films", Electrochim. Acta., 46, 2145 (2001). https://doi.org/10.1016/S0013-4686(01)00393-0
  8. K. H. Lee, Y. K. Fang, W. J. Lee, J. J. Ho, K. H. Chen, and K. C. Liao, "Novel electrochromic devices (ECD) of tungsten oxide ($WO_3$) thin film intergrated with amorphous silicon germanium photodetector for hydrogen sensor", Sensor. Actuat. B-Chem., 69, 96 (2000). https://doi.org/10.1016/S0925-4005(00)00420-2
  9. M. E. Nicho, F. Hernandez, H. Hu, G. Medrano, M. Guizado, and J. A. Guerrero, "Physicochemical and morphological properties of spin-coated poly (3-alkylthiohene) thin films", Sol. Energ. Mater. Sol. Cells., 93, 37 (2009). https://doi.org/10.1016/j.solmat.2008.02.016
  10. M. A. De Paoli, G. Casalbore-Miceli, E. M. Girotto, and W. A. Gazotti, "All polymeric solid state electrochromic devices", Electrochim. Acta., 44, 2983 (1999). https://doi.org/10.1016/S0013-4686(99)00013-4
  11. M. D. Paoli, A. Znelli, M. Mastragostino, and A. M. Rocco, "An electrochromic device combining polypyrrole and WO3 II: solid-state device with polymeric electrolyte", J. Electronanl. Chem., 435, 217 (1997). https://doi.org/10.1016/S0022-0728(97)00308-2
  12. M. S. Michael, M. M. E. Jacob, S. R. S. Prabaharan, and S. Radhakrishna, "Enhanced lithium ion transport in PEO-based solid polymer electrolytes employing a novel class of plasticizers", Solid. State. Ionics., 98, 167 (1997). https://doi.org/10.1016/S0167-2738(97)00117-3
  13. P. E. Trapa, B. Huang, Y. Y. Won, and D. R. Sadoway, "Block copolymer electrolytes synthesized by atom transfer radical polymerization for solid-state, thin-film lithium batteries", Electrochem. Solid. St. Lett., 5, A85 (2002). https://doi.org/10.1149/1.1461996
  14. D. K. Roh, J. T. Park, S. H. Ahn, H. Ahn, D. Y. Ryu, and J. H. Kim, "Amphiphilic poly(vinyl chloride)-g-poly(oxyethylene methacrylate) graft polymer electrolyte: Interactions, nanostructures and applications to dye-sensitized solar cells", Electrochim. Acta., 55, 2976 (2010).
  15. J. K. Choi, Y. W. Kim, J. H. Koh, and J. H. Kim, "Proton conducting membranses based on poly(vinyl chloride) graft copolymer electrolytes", Polym. Adv. Technol., 19, 915 (2008). https://doi.org/10.1002/pat.1060
  16. S. H. Ahn, J. A. Seo, J. H. Kim, Y. Ko, and S. U. Hong, "Synthesis and gas permeation properties of amphiphilic graft copolymer membranes", J. Membr. Sci., 345, 128 (2009). https://doi.org/10.1016/j.memsci.2009.08.037
  17. S. H. Ahn, J. H. Koh, J. A. Seo, and J. H. Kim, "Structure control of organized mesoporous $TiO_2$ films templated by graft copolymers for dye-sensitized solar cells", Chem. Commun., 46, 1935 (2010). https://doi.org/10.1039/b919215h
  18. L. R. A. K. Bandara, M. A. K. L. Dissanayake, and B. E. Mellander, "Ionic conducitivity of plasticized (PEO)-$LiCF_3SO_3 $electrolytes", Electrochim. Acta., 43, 1447 (1998). https://doi.org/10.1016/S0013-4686(97)10082-2