Browse > Article

Preparation and Characterization of Plasticized Poly(vinyl chloride)-g-Poly(oxyethylene methacrylate) Graft Copolymer Electrolyte Membranes  

Seo, Jin-Ah (Department of Chemical and Biomolecular Engineering, Yonsei University)
Koh, Jong-Kwan (Department of Chemical and Biomolecular Engineering, Yonsei University)
Koh, Joo-Hwan (Department of Chemical and Biomolecular Engineering, Yonsei University)
Kim, Jong-Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
Publication Information
Membrane Journal / v.21, no.3, 2011 , pp. 222-228 More about this Journal
Abstract
Poly(vinyl chloride)-g-poly(oxyethylene methacrylate) (PVC-g-POEM) graft copolymer was synthesized via atom transfer radical polymerization (ATRP) and used as an electrolyte for electrochromic device. Plasticized polymer electrolytes were prepared by the introduction of propylene carbonate (PC)/ethylene carbonate (EC) mixture as a plasticizer. The effect of salt was systematically investigated using lithium tetrafluoroborate ($LiBF_4$), lithium perchlorate ($LiClO_4$), lithium iodide (LiI) and lithium bistrifluoromethanesulfonimide (LiTFSI). Wide angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) measurements showed that the structure and glass transition temperature ($T_g$) of polymer electrolytes were changed due to the coordinative interactions between the ether oxygens of POEM and the lithium salts, as supported by FT-IR spectroscopy. Transmission electron microscopy (TEM) showed that the microphase-separated structure of PVC-g-POEM was not greatly disrupted by the introduction of PC/EC and lithium salt. The plasticized polymer electrolyte was applied to the electrochromic device employing poly(3-hexylthiophene) (P3HT) conducting polymer.
Keywords
atom transfer radical polymerization; graft copolymer; electrochromic device; polymer electrolyte; conducting polymer;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. Papaefthimiou, G. Leftheriotis, and P. Yianoulis, "Advanced electrochromic devices based on $WO_3$ thin films", Electrochim. Acta., 46, 2145 (2001).   DOI   ScienceOn
2 H. Ko, J. Park, J. Choi, S. U. Kim, H. J. Kim, and Y. T. Hong, "Double-layered polymer electrolyte membrane based on sulfonated poly(aryl ether sulfone)s for direct methanol fuel cells", Membrane Journal, 19, 291 (2009).
3 J. H. Kim, B. R. Min, J. Won, S. H. Joo, H. S. Kim, and Y. S. Kang, "Role of polymer matrix in polymer/silver complexes for structure, interactions, and facilitated olefin transport", Macromolecules, 36, 6183 (2003).   DOI   ScienceOn
4 M.-J. Choi, C.-H. Shin, T. Kang, J.-K. Koo, and N. Cho, "A study on the organic/inorganic composite electrolyte membranes for dye sensitized solar cell", Membrane Journal, 18, 345 (2008).
5 J. Reiter, O. Krejza, and M. Sedlarikova, "Electrochromic devices employing methacrylate-based polymer electrolytes", Sol. Energy Mater. Sol. Cells., 93, 249 (2009).   DOI   ScienceOn
6 A. Azens and C. G. Granqvist, "Electrochromic smart windows: energy efficiency and device aspects", J. Solid. State. Electrochem., 7, 64 (2003).
7 N. Yoshimoto, O. Shimamura, T. Nishimura, M. Egashira, M. Nichioka, and M. Morita, "A novel polymeric electrolyte based on a copolymer containing self-assembled stearylate moiety for lithiumion batteries", Electrochem. Commun., 11, 481 (2009).   DOI   ScienceOn
8 L. R. A. K. Bandara, M. A. K. L. Dissanayake, and B. E. Mellander, "Ionic conducitivity of plasticized (PEO)-$LiCF_3SO_3 $electrolytes", Electrochim. Acta., 43, 1447 (1998).   DOI
9 S. H. Ahn, J. A. Seo, J. H. Kim, Y. Ko, and S. U. Hong, "Synthesis and gas permeation properties of amphiphilic graft copolymer membranes", J. Membr. Sci., 345, 128 (2009).   DOI
10 S. H. Ahn, J. H. Koh, J. A. Seo, and J. H. Kim, "Structure control of organized mesoporous $TiO_2$ films templated by graft copolymers for dye-sensitized solar cells", Chem. Commun., 46, 1935 (2010).   DOI   ScienceOn
11 M. A. De Paoli, G. Casalbore-Miceli, E. M. Girotto, and W. A. Gazotti, "All polymeric solid state electrochromic devices", Electrochim. Acta., 44, 2983 (1999).   DOI   ScienceOn
12 M. D. Paoli, A. Znelli, M. Mastragostino, and A. M. Rocco, "An electrochromic device combining polypyrrole and WO3 II: solid-state device with polymeric electrolyte", J. Electronanl. Chem., 435, 217 (1997).   DOI
13 J. K. Choi, Y. W. Kim, J. H. Koh, and J. H. Kim, "Proton conducting membranses based on poly(vinyl chloride) graft copolymer electrolytes", Polym. Adv. Technol., 19, 915 (2008).   DOI   ScienceOn
14 M. S. Michael, M. M. E. Jacob, S. R. S. Prabaharan, and S. Radhakrishna, "Enhanced lithium ion transport in PEO-based solid polymer electrolytes employing a novel class of plasticizers", Solid. State. Ionics., 98, 167 (1997).   DOI   ScienceOn
15 P. E. Trapa, B. Huang, Y. Y. Won, and D. R. Sadoway, "Block copolymer electrolytes synthesized by atom transfer radical polymerization for solid-state, thin-film lithium batteries", Electrochem. Solid. St. Lett., 5, A85 (2002).   DOI   ScienceOn
16 D. K. Roh, J. T. Park, S. H. Ahn, H. Ahn, D. Y. Ryu, and J. H. Kim, "Amphiphilic poly(vinyl chloride)-g-poly(oxyethylene methacrylate) graft polymer electrolyte: Interactions, nanostructures and applications to dye-sensitized solar cells", Electrochim. Acta., 55, 2976 (2010).
17 M. E. Nicho, F. Hernandez, H. Hu, G. Medrano, M. Guizado, and J. A. Guerrero, "Physicochemical and morphological properties of spin-coated poly (3-alkylthiohene) thin films", Sol. Energ. Mater. Sol. Cells., 93, 37 (2009).   DOI   ScienceOn
18 K. H. Lee, Y. K. Fang, W. J. Lee, J. J. Ho, K. H. Chen, and K. C. Liao, "Novel electrochromic devices (ECD) of tungsten oxide ($WO_3$) thin film intergrated with amorphous silicon germanium photodetector for hydrogen sensor", Sensor. Actuat. B-Chem., 69, 96 (2000).   DOI