• Title/Summary/Keyword: Transient stability

Search Result 679, Processing Time 0.021 seconds

Roles of B-dot Controller and Failure Analysis for Dawn-dusk LEO Satellite (6시 저궤도 위성에서 B-dot 제어기 역할과 고장분석)

  • Rhee, Seung-Wu;Kim, Hong-Joong;Son, Jun-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.200-209
    • /
    • 2013
  • In this paper, the types of B-dot controller and the review results of B-dot controller stability are summarized. Also, it is confirmed that B-dot controller is very useful and essential tool when a dawn-dusk low earth orbit(LEO) large satellite has especially to capture the Sun for a required power supply in a reliable way after anomaly and that its algorithm is very simple for on-board implementation. New physical interpretation of B-dot controller is presented as a result of extensive theoretical investigation introducing the concept of transient control torque and steady state control torque. Also, the failure effect analysis results of magnetic torquers as well as a simulation verification are included. And the design recommendation for optimal design is provided to cope with the failure of magnetic torquer. Nonlinear simulation results are included to justify its capability as well as its performance for an application to a dawn-dusk LEO large satellite.

Numerical Simulation of Urban Flash Flood Experiments Using Adaptive Mesh Refinement and Cut Cell Method (적응적 메쉬세분화기법과 분할격자기법을 이용한 극한 도시홍수 실험 모의)

  • An, Hyun-Uk;Yu, Soon-Young
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.7
    • /
    • pp.511-522
    • /
    • 2011
  • Two-dimensional shallow water model based on the cut cell and the adaptive mesh refinement techniques is presented in this paper. These two mesh generation methods are combined to facilitate modeling of complex geometries. By using dynamically adaptive mesh, the model can achieve high resolution efficiently at the interface where flow changes rapidly. The HLLC Reimann solver and the MUSCL method are employed to calculate advection fluxes with numerical stability and precision. The model was applied to simulate the extreme urban flooding experiments performed by the IMPACT (Investigation of Extreme Flood Processes and Uncertainty) project. Simulation results were in good agreement with observed data, and transient flows as well as the impact of building structures on flood waves were calculated with accuracy. The cut cell method eased the model sensitivity to refinement. It can be concluded that the model is applicable to the urban flood simulation in case the effects of sewer and stormwater drainage system on flooding are relatively small like the dam brake.

Structural Study of the Cytosolic C-terminus of Vanilloid Receptor 1

  • Seo, Min-Duk;Won, Hyung-Sik;Oh, Uh-Taek;Lee, Bong-Jin
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.11 no.2
    • /
    • pp.85-94
    • /
    • 2007
  • Vanilloid receptor I [transient receptor potential vanilloid subfamily member 1 (TRPV1), also known as VR1] is a non-selective cationic channel activated by noxious heat, vanilloids, and acid, thereby causing pain. VR1 possesses six transmembrane domain and N-and C-terminus cytosolic domains, and appears to be a homotetramer. We studied the structural properties of Cterminus of VR1 (VR1C) using CD and NMR spectroscopy. DPC micelles, with a zwitterionic surface, and SDS micelles, with a negatively charged surface, were used as a membrane mimetic model system. Both SDS and DPC micelles could increase the stability of helical structures and/or reduce the aggregation form of the VR1C. However, the structural changing mode of the VR1C induced by the SDS and DPC micelles was different. The changes according to the various pHs were also different in two micelles conditions. Because the net charges of the SDS and DPC micelles are negative and neutral, respectively, we anticipate that this difference might affect the structure of the VR1C by electrostatic interaction between the surface of the VR1C and phospholipids of the detergent micelles. Based on these similarity and dissimilarity of changing aspects of the VR1C, it is supposed that the VR1C probably has the real pI value near the pH 7. Generally, mild extracellular acidic pH ($6.5{\sim}6.8$) potentiates VRI channel activation by noxious heat and vanilloids, whereas acidic conditions directly activate the channel. The channel activation of the VRI might be related to the structural change of VR1C caused by pH (electrostatic interactions), especially near the pH 7. By measuring the $^1-^{15}N$ TROSY spectra of the VR1C, we could get more resolved and dispersed spectra at the low pH and/or detergent micelles conditions. We will try to do further NMR experiments in low pH with micelles conditions in order to get more information about the structure of VR1C.

  • PDF

A Non-consecutive Cloth Draping Simulation Algorithm using Conjugate Harmonic Functions (켤레조화함수를 이용한 비순차적 의류 주름 모사 알고리즘)

  • Kang Moon Koo
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.3
    • /
    • pp.181-191
    • /
    • 2005
  • This article describes a simplified mathematical model and the relevant numerical algorithm to simulate the draped cloth on virtual human body. The proposed algorithm incorporates an elliptical, or non-consecutive, method to simulate the cloth wrinkles on moving bodies without resorting to the result of the past time-steps of drape simulation. A global-local analysis technique was employed to decompose the drape of cloths into the global deformation and the local wrinkles that will be superposed linearly The global deformation is determined directly by the rotation and the translation of body parts to generate a wrinkle-free yet globally deformed shape of cloth. The local wrinkles are calculated by solving simple elliptical equations based on the orthogonality between conjugate harmonic functions representing the wrinkle amplitude and the direction of wrinkles. The proposed method requires no interpolative time frames even for discontinuous body postures. Standing away from the incremental approach of time integration in conventional methods, the proposed method yields a remarkable reduction of CPU time and an enhanced stability. Also, the transient motion of cloth could be achieved by interpolating between the deformations corresponding to each static posture.

Understanding the Mechanism of Indomethacin-Saccharin Co-crystal Formation Using In-line Monitoring System based on PVM and FBRM (PVM 및 FBRM 기반 인라인 모니터링을 통한 indomethacin-saccharin 공결정의 생성 메커니즘이해)

  • Kim, Paul;Cho, Min-Yong;Choi, Guang J.
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.180-189
    • /
    • 2017
  • Pharmaceutical co-crystals primarily to improve the solubility as well as stability of insoluble drug are to be investigated more intensively for IMDs as US FDA has reclassified co-crystal as a special case of solvates in August this year. In this study, we proposed a mechanism of indomethacin-saccharin co-crystal formation and the creation of transient indomethacin meta-stable form using in-line monitoring tools with the addition rate of anti-solvent as a critical process parameter. Among various instruments, we combined PVM (particle vision measurement) and FBRM (focused beam reflectance measurement) for the in-line monitoring of anti-solvent co-crystallization process. The off-line characterization of resulting powders was carried out employing the PXRD (powder x-ray diffraction) and DSC (differential scanning calorimeter). It was observed that the pathway to the final IMC-SAC co-crystal was significantly dependent upon the anti-solvent addition rate. The process conditions to obtain high quality co-crystal powder effectively were established. Consequently, we concluded that in-line monitoring combing the PVM and FBRM should be useful for the in-line monitoring of pharmaceutical co-crystallization processes.

Thermal Energy Balance Analysis of a Packed Bed for Rock Cavern Thermal Energy Storage (충전층을 이용한 암반공동 열에너지저장시스템의 열에너지 수지 분석)

  • Park, Jung-Wook;Ryu, Dongwoo;Park, Dohyun;Choi, Byung-Hee;Synn, Joong-Ho;Sunwoo, Choon
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.241-259
    • /
    • 2013
  • A packed bed thermal energy storage (TES) consisting of solid storage medium of rock or concrete through which the heat transfer fluid is circulated is considered as an attractive alternative for high temperature sensible heat storage, because of the economical viability and chemical stability of storage medium and the simplicity of operation. This study introduces the technologies of packed bed thermal energy storage, and presents a numerical model to analyze the thermal energy balance and the performance efficiency of the storage system. In this model, one dimensional transient heat transfer problem in the storage tank is solved using finite difference method, and temperature distribution in a storage tank and thermal energy loss from the tank wall can be calculated during the repeated thermal charging and discharging modes. In this study, a high temperature thermal energy storage connected with AA-CAES (advanced adiabatic compressed air energy storage) was modeled and analyzed for the temperature and the energy balance in the storage tank. Rock cavern type TES and above-ground type TES were both simulated and their results were compared in terms of the discharging efficiency and heat loss ratio.

Structural Integrity Assessment of Helicopter Composite Rotor Blade by Analyzing Bird-strike Resistance (조류충돌 해석을 통한 헬리콥터 복합재 로터 블레이드 구조 건전성 평가)

  • Park, Jehong;Jang, Jun Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.8-14
    • /
    • 2019
  • Bird-strike is one of the most important design factors for safety in the aviation industry. Bird-strikes have been the cause of significant damage to aircraft and rotorcraft structures and the loss of life. This study used DYTRAN software to simulate the transient response of an Euler-Lagrangian composite helicopter blade that has been impacted by a bird. The Arbitrary Lagrangian Eulerian (ALE) method and a suitable equation of state were applied to model the bird. ALE was applied to the bird-strike analysis due to the large difference between the properties of the blade and bird. The debris of the bird was assumed to be a fluid and applied as Euler elements after the collision. Through the analysis of bird impacts, the leading-edge of the rotor blade (50.8 mm) was used to identify a positive margin of 1.18 based on the TSAI-FILL criteria. The results are assessed to be sufficiently reliable and may be evaluated to replace tests with various analysis conditions. The structural stability of the rotor blade could be assessed by applying various load conditions and different modeling methods in the future.

Study on collapse mechanism and treatment measures of portal slope of a high-speed railway tunnel

  • Guoping Hu;Yingzhi Xia;Lianggen Zhong;Xiaoxue Ruan;Hui Li
    • Geomechanics and Engineering
    • /
    • v.32 no.1
    • /
    • pp.111-123
    • /
    • 2023
  • The slope of an open cut tunnel is located above the exit of the Leijia tunnel on the Changgan high-speed railway. During the excavation of the open cut tunnel foundation pit, the slope slipped twice, a large landslide of 92500 m3 formed. The landslide body and unstable slope body not only caused the foundation pit of the open cut tunnel to be buried and the anchor piles to be damaged but also directly threatened the operational safety of the later high-speed railway. Therefore, to study the stability change in the slope of the open cut tunnel under heavy rain and excavation conditions, a 3D numerical calculation model of the slope is carried out by Midas GTS software, the deformation mechanism is analyzed, anti-sliding measures are proposed, and the effectiveness of the anti-sliding measures is analyzed according to the field monitoring results. The results show that when rainfall occurs, rainwater collects in the open cut tunnel area, resulting in a transient saturation zone on the slope on the right side of the open cut tunnel, which reduces the shear strength of the slope soil; the excavation at the slope toe reduces the anti-sliding capacity of the slope toe. Under the combined action of excavation and rainfall, when the soil above the top of the anchor pile is excavated, two potential sliding surfaces are bounded by the top of the excavation area, and the shear outlet is located at the top of the anchor pile. After the excavation of the open cut tunnel, the potential sliding surface is mainly concentrated at the lower part of the downhill area, and the shear outlet moves down to the bottom of the open cut tunnel. Based on the deformation characteristics and the failure mechanism of the landslides, comprehensive control measures, including interim emergency mitigation measures and long-term mitigation measures, are proposed. The field monitoring results further verify the accuracy of the anti-sliding mechanism analysis and the effectiveness of anti-sliding measures.

A Review of Quantitative Landslide Susceptibility Analysis Methods Using Physically Based Modelling (물리사면모델을 활용한 정량적 산사태 취약성 분석기법 리뷰)

  • Park, Hyuck-Jin;Lee, Jung-Hyun
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.27-40
    • /
    • 2022
  • Every year landslides cause serious casualties and property damages around the world. As the accurate prediction of landslides is important to reduce the fatalities and economic losses, various approaches have been developed to predict them. Prediction methods can be divided into landslide susceptibility analysis, landslide hazard analysis and landslide risk analysis according to the type of the conditioning factors, the predicted level of the landslide dangers, and whether the expected consequence cased by landslides were considered. Landslide susceptibility analyses are mainly based on the available landslide data and consequently, they predict the likelihood of landslide occurrence by considering factors that can induce landslides and analyzing the spatial distribution of these factors. Various qualitative and quantitative analysis techniques have been applied to landslide susceptibility analysis. Recently, quantitative susceptibility analyses have predominantly employed the physically based model due to high predictive capacity. This is because the physically based approaches use physical slope model to analyze slope stability regardless of prior landslide occurrence. This approach can also reproduce the physical processes governing landslide occurrence. This review examines physically based landslide susceptibility analysis approaches.