DOI QR코드

DOI QR Code

다공 동축 버너를 이용한 순산소 연소에서 CO2 첨가가 화염에 미치는 영향에 관한 실험적 연구

Experimental Study of Effect of CO2 Addition on Oxy-Fuel Combustion in Triple Concentric Multi-Jet Burner

  • 김승환 (한국과학기술원 기계공학과) ;
  • 박장희 (한국과학기술원 기계공학과) ;
  • 이대근 (한국에너지기술연구원) ;
  • 신현동 (한국과학기술원 기계공학과)
  • Kim, Seung-Hwan (Dept of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Park, Jang-Hee (Dept of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lee, Dae-Keun (Korea Institute of Energy Research) ;
  • Shin, Hyun-Dong (Dept of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
  • 발행 : 2010.04.01

초록

순산소 연소와 배가스 재순환(FGR : Flue Gas Recirculation) 기술은 $CO_2$ 저감 목적으로 많은 연구자들의 관심을 받아왔다. 본 연구는 다공 동축 버너를 이용하여 산소 공급비(OFR : Oxygen Feeding Ratio)에 따른 순산소 연소 특성과 동일 조건에서 FGR 시스템을 모사하기 위하여 공급 위치에 따른 $CO_2$ 첨가 효과의 특성을 비교하는 데에 초점을 맞추었다. 순산소 연소는 당량비 0.93 에 해당하는 연료 유량 15lpm 일 때 OFR 전 영역에서 안정적이었고, 화염 구조와 길이는 OFR 에 따라 변동하였다. 순산소 연소에 $CO_2$ 를 첨가할 때, 안정, 천이, 준평형, 불안정 그리고 날림 등의 다양한 안정화 모드가 관찰되었으며, 연소로 내의 전반적인 온도분포가 감소하였고, 특히 case 4 에서 1800 K 이하로 떨어져 최대 감소 효과를 보였다. 노즐 끝단으로부터 높이에 따른 $CO_2$ 농도는 첨가된 $CO_2$ 의 체적 비율에 따라 변동하였다.

The use of oxy-fuel combustion and flue gas recirculation (FGR) for $CO_2$ reduction has been studied by many researchers. This study focused on the characteristics of oxy-fuel combustion and the effects of $CO_2$ addition from the point of view of oxygen feeding ratio (OFR) and the position of $CO_2$ addition in order to reproduce an FGR system with a triple concentric multi-jet burner. Oxy-fuel combustion was stable at all OFRs at a fuel flow-rate of 15 lpm, which corresponds to an equivalence ratio of 0.93; however, the structure and length of the flame varied at different OFRs. When $CO_2$ was added in oxy-fuel combustion, various stability modes such as stable, transient, quasistable, unstable, and blow-out were observed. The temperature in the combustion chamber decreased upon $CO_2$ addition in all conditions, and the maximum reduction in temperature was below 1800 K. $CO_2$ concentration with respect to height varied with the volume percent of $CO_2$ at the nozzle tip.

키워드

참고문헌

  1. Kim, H. J., Choi, W., Bae, S. H. and Shin, H. D., 2008, “Oxy-Fuel and Flue Gas Recirculation Combustion Technology: A Review,” Trans. of the KSME (B), Vol. 32, No. 10, pp. 729-753. https://doi.org/10.3795/KSME-B.2008.32.10.729
  2. Ahn, K. Y., Lee, D. K. and Park, J. H., 2009, “Oxy-fuel Combustion Technology,” News & Information for Chemical Engineers, Vol. 27, No. 2, pp. 155-159.
  3. Kim, H. K., Kim, Y., Lee, S. M. and Ahn, K. Y., 2006, “Emission Characteristics of the 0.03 MW Oxy-Fuel Combustor,” Energy and Fuels, Vol. 26, pp. 2125-2130.
  4. Kim, H. K., Kim, Y., Lee, S. M. and Ahn, K. Y., 2007, “NO Reduction in 0.03-0.2MW Oxy-fuel Combustor Using Flue Gas Recirculation Technology,” Proceeding of the Combustion Institute, Vol. 31, pp. 3377-3384. https://doi.org/10.1016/j.proci.2006.08.083
  5. Ahn, J., Kim, H. J. and Choi, K. S., 2009, “Combustion Characteristics of Oxy-fuel Burners for $CO_2$ Capturing Boilers,” Journal of Thermal Science and Technology, Vol. 4, No. 3, pp. 408-413. https://doi.org/10.1299/jtst.4.408
  6. Seo, J. I., Guahk, Y. T., Bae, S. H., Hong, J. G., Lee, U. D. and Shin, H. D., 2005, “Experimental Study on the Oxygen Combustion Characteristics with CO2 Feeding,” Journal of Korean Society of Combustion, Vol. 10, pp. 26-34.
  7. Kim, H. K. and Kim, Y. M., 2005, “Flame Length Characteristic for Varying Nozzle Diameter to Develop Oxy-fuel Combustor,” Trans. of the KSME(B), Vol. 29, No. 7, pp. 861-867.
  8. Sautet, J. C., Boushaki, T., Salentey, L. and Labegorre, B., 2006, “OXY-COMBUSTION PROPERTIES OF INTERACTING SEPERATED JETS,” Combustion Science and Technology , Vol. 178, pp. 2075-2096. https://doi.org/10.1080/00102200600860657
  9. Boushaki, T., Sautet, J. C., Salentey, L., Labegorre, B., 2007, “The behavior of lifted oxy-fuels in burners with separated jets,” International Communications in Heat and mass Transfer, Vol. 34, pp. 8-18. https://doi.org/10.1016/j.icheatmasstransfer.2006.09.008
  10. Kim, H. J., Choi, W., Bae, S. H. and Shin, H. D., 2009, “Characteristics of a Multi-jet Burner in Oxy- Liquefied Petroleum Gas (LPG) Flames,” Energy and fuels, Vol. 23, pp. 1456-1463. https://doi.org/10.1021/ef800854e
  11. Baltasar, J., Carvalho, M., Coelho, P. and Costa, M., 1997, “Flue Gas Recirculation in a Gas-fired Laboratory Furnace: Measurements and modeling,” Fuel, Vol. 76, No. 10, pp. 919-929. https://doi.org/10.1016/S0016-2361(97)00093-8
  12. Bae, M. W., Jung, K. J. and Cho, Y. S., 2007, “A study on the Effect of Recirculated Exhaust Gas upon Exhaust Emissions of Boiler with a FGR system,” Trans. of the KSME(B), Vol. 31, No.57, pp. 405-415.
  13. Lee, B. J., Kim, J. S. and Lee, S., 2004, “Enhancement of Blowout Limit by the Interaction of Multiple Non-premixed Jet Flames,” Combustion Science and Technology, Vol. 176, pp. 481-497. https://doi.org/10.1080/00102200490276700
  14. Park, J., Park, J. S., Kim, H. P., Kim, J. S., Kim, S. C., Choi, J. G., Cho, H. C., Cho, K. W. and Park, H. S., 2007, “NO Emission Behavior in Oxy-fuel Combustion Recirculated with Carbon Dioxide,” Energy and Fuels , Vol. 21, pp. 121-129. https://doi.org/10.1021/ef060309p
  15. Lozano, A., Yip, B. and Hanson, R. K., 1992, “Acetone : a Tracer for Concentration Measurements in Gaseous Flows by Planar Laser-Induced Fluorescence,” Experiments in Fluids, Vol. 13, pp. 369-376. https://doi.org/10.1007/BF00223244