DOI QR코드

DOI QR Code

Roles of B-dot Controller and Failure Analysis for Dawn-dusk LEO Satellite

6시 저궤도 위성에서 B-dot 제어기 역할과 고장분석

  • Rhee, Seung-Wu (Science & Technology Satellite Division, Korea Aerospace Research Institute) ;
  • Kim, Hong-Joong (University Science & Technology, Korea Aerospace Research Institute) ;
  • Son, Jun-Won (Science & Technology Satellite Division, Korea Aerospace Research Institute)
  • Received : 2012.10.26
  • Accepted : 2013.02.12
  • Published : 2013.03.01

Abstract

In this paper, the types of B-dot controller and the review results of B-dot controller stability are summarized. Also, it is confirmed that B-dot controller is very useful and essential tool when a dawn-dusk low earth orbit(LEO) large satellite has especially to capture the Sun for a required power supply in a reliable way after anomaly and that its algorithm is very simple for on-board implementation. New physical interpretation of B-dot controller is presented as a result of extensive theoretical investigation introducing the concept of transient control torque and steady state control torque. Also, the failure effect analysis results of magnetic torquers as well as a simulation verification are included. And the design recommendation for optimal design is provided to cope with the failure of magnetic torquer. Nonlinear simulation results are included to justify its capability as well as its performance for an application to a dawn-dusk LEO large satellite.

본 논문에서 B-dot 제어기 종류, Lyapunov 안정성 관점에서 B-dot 제어기 안정성 검토 결과 요약이 제시되었다. 6시 태양동기 궤도의 대형위성이 초기 자세획득 할 때 또는 이상상태 발생 후 태양획득을 위해 B-dot 제어기가 사용될 경우, B-dot 제어기의 활용성에 대한 검토 결과 제어기 활용성이 매우 높다는 결론을 얻을 수 있었다. 또한 B-dot 제어기 작동원리의 이해를 위해 천이상태 제어토크와 정상상태 제어토크 개념을 도입해서 새로운 물리적 해석 결과를 도출 제시하였으며, 자기 토커가 고장 났을 때 자세 안정화에 미치는 영향을 이론적으로 분석 후 토커고장에 대한 설계 최적화 방안을 제시하였다. 또한 6시 태양동기 궤도의 대형위성에서 B-dot 제어기의 유용성 및 자기토커 고장 영향 분석결과 확인을 위해 비선형 시뮬레이션 결과 만족스런 태양지향능력 및 예측된 고장 영향 분석결과 등이 확인되었다.

Keywords

References

  1. A. Craig Stickler and K.T. Alfriend, "Elementary Magnetic Attitude Control System," Journal of Spacecraft, Vol. 13, No. 5, 1975, pp. 282-287.
  2. A. Craig Stickler, "A Magnetic Control System for Attitude Acquisition," ITHACO, inc. Ithaca, N.Y., Rept. 90345, Jan. 1972.
  3. Patrice Damilano, "Control of the Attitude of a Satellite in Low Orbit Involving Solar Acquisition," U.S. Patent 5,788,188, Aug. 4, 1998.
  4. C. Whitford and D. Forrest, "The CATSAT Attitude Control System," 12th AIAA/USU Conference on Small Satellites, 1998.
  5. W. Steyn and Y. Hashida, "An Attitude Control System for a Low-Cost Earth Observation Satellite with Orbit Maintenance Capability," 13th AIAA/USU Conference on Small Satellites, 1999.
  6. S.-W. Rhee, H-J Kim & J-J Lee, "KOMPSAT-2 AOCS Control Mode & Power Safe Mode Design," KSAS International Journal, Vol. 6, No. 1, May 2005 https://doi.org/10.5139/IJASS.2005.6.1.077
  7. S.-W. Rhee, 2002, KOMPSAT-2 Subsystem Specification for the Attitude & Orbit Control Subsystem(KARI Internal Doc.)
  8. Seung-Wu Rhee, Hyun-Ho Seo, "Two Axis Attitude Control System Design of Momentum Biased Satellite," J. of The Korean Society for Aeronautical and Space Sciences, Vol.34, No.4, 2006, pp. 40-46. https://doi.org/10.5139/JKSAS.2006.34.4.040
  9. T. Mizuno, H. Saito, Y. Masumoto et al., "INDEX: A Piggy-Back Satellite for Advanced Technology Demonstration," 13th AIAA/USU Conference on Small Satellites, 1999

Cited by

  1. Radial Type Satellite Attitude Controller Design using LMI Method and Robustness Analysis vol.43, pp.11, 2015, https://doi.org/10.5139/JKSAS.2015.43.11.998