• Title/Summary/Keyword: Transient fault

Search Result 418, Processing Time 0.025 seconds

Modeling and Fault Simulation of Hydro Generator Control System (수력 발전기 제어설비의 모델링과 사고 시뮬레이션)

  • Park, Chul-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.4
    • /
    • pp.102-107
    • /
    • 2015
  • In this paper, the generator control system by using PSCAD/EMTDC was modeled and several faults simulation were performed. The generator control system is composed of generator, turbine, exciter and governor. The parameters of generator control system model were obtained from field power plant. And then, the various transient phenomena through obtained several signal of developed modeling were analyzed.

Study On The Characteristic Of System Fluctuation Under Large Generator Unit Outage (대전원타락사고시의 계통동요특성 해석)

  • 송길영;이종훈;김영창
    • 전기의세계
    • /
    • v.24 no.2
    • /
    • pp.71-77
    • /
    • 1975
  • This paper describes the results of a study for the stability of power system when the Kori Nuclear #1 P/P is operated with existing system. First, a transient disturbance, which effects the stability of entire power system, was analysed and to cope with the problem a load shedding method was studied to recover the fluctuation of the power system. Second, transient stability problem was studied when three phase fault occurs in 345 Extra High Voltage power System, and from this result, it was found to be highly effective that high speed protecting device should be provided and operated to recover the fault.

  • PDF

High Impedance Fault Detection Based on Wavelet Transform (웨이브렛 변환을 이용한 고저항 사고 검출)

  • Chung, Young-Sik;Kim, Dong-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.263-264
    • /
    • 2008
  • A method for high impedance fault(HIF) detection based on wavelet transform is presented in this paper. HIF is detected and classified by obtaining the energy distribution curve from the wavelet coefficients at each level. The energy distribution of each transient disturbance has unique deviation from sinusoidal wave in particular energy level, which is adopted to provide reliable classification of the type of transient.

  • PDF

A Study on Power Cable Fault Using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 전력케이블 고장현상에 판한 연구)

  • Kim, Jeom-Sik;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.868-870
    • /
    • 1996
  • This paper describes the faun phenomena by the simulation in power system including underground transmission power cable. Studying on fault phenomena is a very important part to decide the circuit breaker, protective relay and system configuration. Simulation was carried out in several different model system depended upon cable kinds using PSCAD/EMTDC, which is one of the transient program. The simulated results show the possibility to analyze transient phenomena for the cable system.

  • PDF

Fault Tolerant Processor Design for Aviation Embedded System and Verification through Fault Injection (항공용 임베디드 시스템을 위한 고장감내형 프로세서 설계와 오류주입을 통한 검증)

  • Lee, Dong-Woo;Ko, Wan-Jin;Na, Jong-Wha
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.2
    • /
    • pp.233-238
    • /
    • 2010
  • In this paper, we applied the forward and backward error recovery techniques to a reduced instruction set computer (risc) processor to develop two fault-tolerant processors, namely, fetch redundant risc (FRR) processor and a redundancy execute risc (RER) processor. To evaluate the fault-tolerance capability of three target processors, we developed the base risc processor, FRR processor, and RER processor in SystemC hardware description language. We performed fault injection experiment using the three SystemC processor models and the SystemC-based simulation fault injection technique. From the experiments, for the 1-bit transient fault, the failure rate of the FRR, RER, and base risc processor were 1%, 2.8%, and 8.9%, respectively. For the 1-bit permanent fault, the failure rate of the FRR, RER, and base risc processor were 4.3%, 6.5%, and 41%, respectively. As a result, for 1-bit fault, we found that the FRR processor is more reliable among three processors.

Transient Stability Analysis of Wind Turbine Generator Connected to a Weak Grid (약한 계통에 연계된 풍력발전기의 과도안정도 해석)

  • Seo, Gyu-Seok;Park, Ji-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4494-4499
    • /
    • 2014
  • The margin of transient stability of a weak grid system is very low because of the small short-circuit ratio and large impedance. If the fault of the weak grid is cleared by the protection system, one of the major lines is disconnected after the fault is cleared. This further reduces the system strength. Therefore, it is necessary that a new generation system be added to the weak grid to enhance the transient stability margin. A conventional synchronous generator and wind turbine generator were added to a base grid system. The results of transient stability analysis with additional generators using PSSE were compared. The simulations showed that wind turbine generators provide good damping performance and enhance the transient stability margin based on CCT up to 5 times.

Compensation of the Secondary Voltage of a Three Winding Coupling Capacitor Voltage Transformer (3권선 CCVT의 2차 전압 보상 방법)

  • Kang, Yong-Cheol;Kim, Yeon-Hee;Zheng, Tai-Ying;Jang, Sung-Il;Kim, Yong-Gyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.938-943
    • /
    • 2008
  • Coupling capacitor voltage transformers(CCVTs) have been used in extra or ultra high voltage systems to obtain the standard low voltage signal for protection and measurement. For fast suppression of the phenomenon of ferroresonance, three winding CCVTs are used instead of two winding CCVTs. A tuning reactor is connected between a capacitor voltage divider and a voltage transformer to reduce the phase angle difference between the primary and secondary voltages in the steady state. Slight distortion of the secondary voltage is generated when no fault occurs. However, when a fault occurs, the secondary voltage of the CCVT has significant errors due to the transient components such as dc offset component and/or high frequency components resulting from the fault. This paper proposes an algorithm for compensating the secondary voltage of a three winding CCVT in the time domain. With the values of the measured secondary voltage of the three winding CCVT, the secondary, tertiary and primary currents and voltages are estimated; then the voltages across the capacitor and the tuning reactor are calculated and then added to the measured voltage. Test results indicate that the algorithm can successfully compensate the distorted secondary voltage of the three winding CCVT irrespective of the fault distance, the fault impedance and the fault inception angle as well as in the steady state.

Fault-Tolerant Control of Input/Output Asynchronous Sequential Circuits with Transient Faults Violating Fundamental Mode (기본 모드를 침해하는 과도 고장이 존재하는 입력/출력 비동기 순차 회로에 대한 내고장성 제어)

  • Yang, Jung-Min;Kwak, Seong-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.399-408
    • /
    • 2022
  • This paper proposes a corrective control system to achieve fault-tolerant control for input/output asynchronous sequential circuits vulnerable to transient faults violating fundamental mode operations. To overcome non-fundamental mode faults occurring in transient transitions of asynchronous sequential circuits, it is necessary to determine the end of unauthorized state transitions caused by the faults and to stably take the circuit from the faulty state to a desired state that is output equivalent with the normal next stable state. We address the existence condition for a proper output-feedback corrective controller that achieves fault diagnosis and fault-tolerant control for these non-fundamental mode faults. The corrective controller and asynchronous sequential circuit are implemented on field-programming gate array to demonstrate the synthesis procedure and applicability of the proposed control scheme.

Analysis on Current Limiting Characteristics of Transformer Type SFCL with Additionally Coupled Circuit

  • Lim, Seung-Taek;Ko, Seok-Cheol;Lim, Sung-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.533-539
    • /
    • 2018
  • In this paper, the transformer type superconducting fault current limiter (SFCL) with additionally coupled circuit was suggested and its peak fault current limiting characteristics due to the fault condition to affect the fault current were analyzed through the fault current limiting tests. The suggested transformer type SFCL is basically identical to the previous transformer type SFCL except for the additional coupled circuit. The additional coupled circuit, which consists of the magnetically coupled winding to the primary and the secondary windings together with another superconducting element and is connected in parallel with the secondary winding of the transformer type SFCL, is contributed to the peak fault current limiting operation for the larger transient fault current directly after the fault occurrence. To confirm the fault current limiting operation of the suggested SFCL, the fault current limiting tests of the suggested SFCL were performed and its effective peak fault current limiting characteristics were analyzed through the analysis on the electrical equivalent circuit.

A Decision Method for the Optimal Insertion Resistance of a Superconducting Fault Current Limiter with Reduction of an Asymmetric Fault Current (비대칭 고장전류 저감 기능을 갖는 초전도 한류기의 최적 저항 결정 방안)

  • Kim, Chang-Hwan;Kim, Kyu-Ho;Rhee, Sang-Bong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.57-63
    • /
    • 2015
  • Fault currents characteristics contain decaying DC offset. First cycle peak value of fault currents is higher than steady-state fault current value. These characteristics can affect the operation of protective device. To reduce the asymmetric fault current, the method using a series connection of two hybrid-type Superconducting Fault Current Limiter(SFCL) components, an auxiliary SFCL and a main SFCL, has been proposed. The auxiliary SFCL limits the first half cycle fault current, while main SFCL limits the steady state fault currents. This paper proposed a decision method of the optimal insertion resistance of auxiliary and main SFCL components. To verify the effectiveness of proposed scheme, the various simulations are performed by using Electromagnetic Transient Program(EMTP).