• Title/Summary/Keyword: Transient Signal Analysis

Search Result 167, Processing Time 0.027 seconds

Features Analysis of Speech Signal by Adaptive Dividing Method (음성신호 적응분할방법에 의한 특징분석)

  • Jang, S.K.;Choi, S.Y.;Kim, C.S.
    • Speech Sciences
    • /
    • v.5 no.1
    • /
    • pp.63-80
    • /
    • 1999
  • In this paper, an adaptive method of dividing a speech signal into an initial, a medial and a final sound of the form of utterance utilized by evaluating extreme limits of short term energy and autocorrelation functions. By applying this method into speech signal composed of a consonant, a vowel and a consonant, it was divided into an initial, a medial and a final sound and its feature analysis of sample by LPC were carried out. As a result of spectrum analysis in each period, it was observed that there existed spectrum features of a consonant and a vowel in the initial and medial periods respectively and features of both in a final sound. Also, when all kinds of words were adaptively divided into 3 periods by using the proposed method, it was found that the initial sounds of the same consonant and the medial sounds of the same vowels have the same spectrum characteristics respectively, but the final sound showed different spectrum characteristics even if it had the same consonant as the initial sound.

  • PDF

A Calculation Method of Source Level of Underwater Transient Noise by Frequency Band (주파수 대역별 수중 순간소음 음원준위 산출 기법)

  • Choi, Jae-Yong;Oh, Jun-Seok;Lee, Phil-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.528-533
    • /
    • 2010
  • This paper describes a calculation method of source level of a ship transient noise, which is one of the important elements for the ship detection. Aim of transient noise measurements is to evaluate of acoustic energy due to singular occurrence, which is therefore defined as non-periodic and short termed events like an attack periscope, a rudder and a torpedo door. In generally, in the case of randomly spaced impulse, the spectrum becomes a broadband random noise with no distinctive pattern. Therefore, frequency analysis is not particularly revealing for type of signal. In the paper, it is performed in time domain to analyze a transient noise. However, a source level of transient noise is required an investigation for multiple frequency band. So, in order to calculate a source level of transient noise, a design of exponential weighting function, convolution, band pass filtering, peak detection, root mean square, and parameter compensation are applied. The effectiveness of this calculation scheme is studied through computer simulations and a sea test. Furthermore, an application of the method is applied in a real case.

On the measurement of the transient dynamics of the nanocomposites reinforced concrete systems as the main part of bridge construction

  • Shuzhen Chen;Hou Chang-ze;Gongxing Yan;M. Atif
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.417-428
    • /
    • 2024
  • Nanocomposite-reinforced concrete systems have gained increasing attention in bridge construction due to their enhanced mechanical properties and durability. Understanding the transient dynamics of these advanced materials is crucial for ensuring the structural integrity and performance of bridge infrastructure under dynamic loading conditions. This paper presents a comprehensive study of the measurement techniques employed for assessing the transient dynamics of nanocompositereinforced concrete systems in bridge construction applications. A numerical method, including modal analysis are discussed in detail, highlighting their advantages, limitations, and applications. Additionally, recent advancements in sensor technologies, data acquisition systems, and signal processing techniques for capturing and analyzing transient responses are explored. The paper also addresses challenges and opportunities in the measurement of transient dynamics, such as the characterization of nanocomposite-reinforced concrete materials, the development of accurate numerical models, and the integration of advanced sensing technologies into bridge monitoring systems. Through a critical review of existing literature and case studies, this paper aims to provide insights into best practices and future directions for the measurement of transient dynamics in nanocompositereinforced concrete systems, ultimately contributing to the design, construction, and maintenance of resilient and sustainable bridge infrastructure.

Oscillation Frequency Detecting Technique for Transmission Line Protection using Prony's Analysis (프로니해석법을 이용한 공진 주파수 검출 알고리즘)

  • Cho, Kyung-Rae;Kim, Soong-Soo;Park, Jong-Koun;Hong, Jun-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.509-512
    • /
    • 1995
  • The relaying algorithm to calculate the fault distance from only transient signal at faults in T/L is presented. In this paper. At faults the oscillation frequency components exist in both voltage and current and these components minimize the input impedance shown in fault point. The equivalent source impedance shown in relaying point is needed to calculate the fault distance using these components. To source impedance, the reflection coefficient between forward wave and backward and the Prony's analysis is also employed to extract the oscillation frequency component from transient signals. The case study show that the new distance relaying algorithm satisfies the high operation speed and high accuracy even if the algorithm uses only transient signals.

  • PDF

Time-Frequency Domain Analysis of Acoustic Signatures Using Pseudo Wigner-Ville Distribution

  • Jeon, Jae-Jin
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.674-679
    • /
    • 1994
  • Acoustic signal such as speech and scattered sound, are generally a nonstationary process whose frequency contents vary at any instant of time. For time-varying signal, whether a nonstationary or a deterministic transient signal, a traditional frequency domain representation does not reveal the contents of signal characteristics and may lead to erroneous results such as the loss of desired characteristics features or the mis-interpretation for a wrong conclusion. A time-frequency domain representation is needed to characterize such signatures. Pseudo Wigner-Ville distribution (PWVD) is ideally suited for portraying nonstationary signal time-frequency domain and carried out by adapting the fast Fourier transform algorithm. In this paper, the important properties of PWVD were investigated using both stationary and nonstationry signatures by numerical examples PWVD was applied to acoustic sigtnatures to demonstrate its application for time-ferquency domain analysis.

  • PDF

Mixed-Signal Circuit Testing Using Digital Input and Frequency Analysis (디지털입력과 주파수 성분 분석을 통한 혼성신호 회로 테스트 방법)

  • 노정진
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.4
    • /
    • pp.34-41
    • /
    • 2003
  • A new technique for detecting parametric faults in mixed signal circuits is proposed Pseudo-random sequence from linear feedback shift register(LFSR) is fed to circuit-under-test (CUT) as stimulus and wavelets are used to compact the transient response under this stimulus into a small number of signature. Wavelet based scheme decomposes the transient response into a number of signal in different frequency bands. Each decomposed signal is compacted into a signature using digital integrator. The digital pulses from LFSR, owing to its pseudo-randomness property, are almost uniform in frequency domain, which generates multi-frequency response when passed through CUT. The effectiveness of this technique is demonstrated in our experimental results.

Analysis of Transient Signal Using Autocorrelation-like Matrix (자기상관유사행렬을 이용한 과도기적 신호의 분석)

  • 최규성;김영수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.7
    • /
    • pp.1689-1698
    • /
    • 1998
  • In this paper, we present a new method for estimating the parameters of transient-type signal in additive white Gaussian noise. This method makes use of the truncated singular value decomposition of an extended-order auto-correlation-like matrix based on the linear-prediction model. The method is tested on data consisting of two exponentially dampled sinusoidal signals with the same damping factor and different damping factor. Simulation results are illustrated to demonstrate the better performance of the method applied to the auto-correlation-like matrix than that applied to the data matrix.

  • PDF

Evaluation of Surface-Breaking Crack Based on Laser-Generated Ultrasonics and Wavelet Transform (레이저 초음파와 Wavelet변환을 이용한 재료표면균열 평가)

  • Lee, Min-Rae;Choi, Sang-Woo;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.2
    • /
    • pp.152-162
    • /
    • 2001
  • Laser-generated ultrasonic technique which is one of the reliable nondestructive evaluation techniques has been applied to evaluate the integrity of structures by analyzing the characteristics of signal obtained from surface crack. Therefore, the signal analysis of the laser-generated ultrasonics is absolutely necessary for the accurate and quantitative estimation of the surface defects. In this study, one-sided measurement by laser-generated ultrasonic has been applied to evaluate the depth of the surface-breaking crack in the materials. However, since the ultrasonic waveform excited by pulse laser is very difficult to distinguish the defect signals, it is necessary to consider the signal analyses of the transient waveform. Wavelet Transform(WT) is a powerful tool for processing transient signals with temporally varying spectra that helps to resolve high and low frequency transient components effectively. In this paper, the analyses of the surface-breaking crack of the ultrasonic signal excited by pulse laser are presented by employing the WT analyses.

  • PDF

A Study on the Convergence Characteristics Analysis of Chaotic Dynamic Neuron (동적 카오틱 뉴런의 수렴 특성에 관한 연구)

  • Won-Woo Park
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.1
    • /
    • pp.32-39
    • /
    • 2004
  • Biological neurons generally have chaotic characteristics for permanent or transient period. The effects of chaotic response of biological neuron have not yet been verified by using analytical methods. Even though the transient chaos of neuron could be beneficial to overcoming the local minimum problem, the permanent chaotic response gives adverse effect on optimization problems in general. To solve optimization problems, which are needed in almost all neural network applications such as pattern recognition, identification or prediction, and control, the neuron should have one stable fixed point. In this paper, the dynamic characteristics of the chaotic dynamic neuron and the condition that produces the chaotic response are analyzed, and the convergence conditions are presented.

  • PDF

Power Quality Data Compression using Wavelet Transform (웨이브렛 변환을 이용한 전력품질 데이터 압축에 관한 연구)

  • Chung Young-Sik
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.12
    • /
    • pp.561-566
    • /
    • 2005
  • This paper introduces a compression technique for power qualify disturbance signal via discrete wavelet transform(DWT). The proposed approach is based on a previous estimation of the stationary component of power quality disturbance signal, so that it could be subtracted from the original signal in order to reduce a dynamic range of signal and generate transient events signal, which is subsequently applied to the compression technique. The compression techniques is performed through the difference signal decomposition, thresholding of wavelet coefficients, and signal reconstruction. It presents the relation between compression efficiency and threshold. It shouts that the wavelet transform leads to a power quality data compression approach with high compression efficiency, small compression error and good de-nosing effect.