• Title/Summary/Keyword: Transient Pipe Flow

Search Result 55, Processing Time 0.026 seconds

Dynamic Stability and Response Analysis of Piping System with Internal Flow (내부에 유체가 흐르는 파이프계의 동적안정성 및 응답해석)

  • 이우식;박철희;홍성철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1861-1871
    • /
    • 1991
  • In this study, the piping system conveying unsteady flow is considered. The effects of coupling between the pipe motion and the velocity and pressure of fluid are included for the dynamic stability and response analysis of the piping system. The dynamic equations for a piping system are derived by Newtonian dynamics. For the momentum and continuity equations, the concept of moving control volume is applied. Thus, the governing equations derived herein are valid for the applications to the vibration problems occurred when a piping system starts up or shuts down and also when the valves and pumps operate. For a simply supported straight pipe, the stability analysis is conducted for various nondimensional parameters. The dynamic responses, in both stable and unstable region of stability chart, are numerically tested by the use of central difference method.

Numerical Analysis on the Transient Load Characteristics of Supersonic Steam Impinging Jet using LES Turbulence Model (LES 난류모델을 이용한 초음속 증기 충돌제트의 과도하중 특성에 대한 수치해석 연구)

  • Oh, Se-Hong;Choi, Dae Kyung;Park, Won Man;Kim, Won Tae;Chang, Yoon-Suk;Choi, Choengryul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.2
    • /
    • pp.77-87
    • /
    • 2018
  • In the case of high-energy line breaks in nuclear power plants, supersonic steam jet is formed due to the rapid depressurization. The steam jet can cause impingement load on the adjacent structures, piping systems and components. In order to secure the design integrity of the nuclear power plant, it is necessary to evaluate the load characteristics of the steam jet generated by high-energy pipe rupture. In the design process of nuclear power plant, jet impingement load evaluation was usually performed based on ANSI/ANS 58.2. However, U.S. NRC recently pointed out that ANSI/ANS 58.2 oversimplifies the jet behavior and that some assumptions are non-conservative. In addition, it is recommended that dynamic analysis techniques should be applied to consider transient load characteristics. Therefore, it is necessary to establish an evaluation methodology that can analyze the dynamic load characteristics of steam jet ejected when high energy pipe breaks. This research group has developed and validated the CFD analysis methodology to evaluate the transient behavior of supersonic impinging jet in the previous study. In this study, numerical study on the transient load characteristics of supersonic steam jet impingement was carried out and amplitude and frequency analysis of transient jet load was performed.

Experimental Study on the Control Characteristics of the Transient Pulsation Pressure in the Hydraulic Brake System (유압 브레이크계통의 과도맥동압력 제어특성에 관한 실험적 연구)

  • Lee, Joo-Seong;Lee, Kye-Bock;Lee, Chung-Gu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.1
    • /
    • pp.21-26
    • /
    • 2001
  • A method for the control of pulsating pressure transients in the hydraulic brake system has been presented and experimentally verified. This control is accomplished by installing flow restricting devices at appropriate locations in the brake oil pipe line. The experimental results presented are expected to provide a basis for transient control design of hydraulic brake systems.

  • PDF

Applicability of Several Skeletonization Methods for the Transient Analysis in the Water Distribution System (상수관망 부정류 해석을 위한 관망 간략화 방법에 대한 연구)

  • Lee, Jong-Pil;Kim, Hyung-Guen;Kim, Sang-Hyun;Lee, Hyun-Dong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.521-526
    • /
    • 2004
  • It is necessary to analyze the unsteady flow in the pipe network for the better operation and controls, but there are some problems in actual pipe network simulation, such as collecting a large amount of information in the field, operating highly upgraded computer system, and keeping a big storage device to run analysis program. The skeletonization method is used to cope with the problems in this paper. It is expected to reduce computation time, researcher's efforts, and costs for the analyzing the pipe network. The impact of individual pipe elements to the behavior of the water distribution system can be accounted in the process of skeletonization. However it is also important to study continuously about how to apply the skeletonization method for each of different cases, because inadequate uses may bring simulation to a false result. This paper introduces basic theories and skeletonizing examples in the actual pipe network in Dae-gu city.

  • PDF

Code development and preliminary validation for lead-cooled fast reactor thermal-hydraulic transient behavior

  • Chenglong Wang;Chen Wang;Wenxi Tian;Guanghui Su;Suizheng Qiu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2332-2342
    • /
    • 2024
  • Lead-cooled fast reactors (LFRs) have a wide range of application scenarios, which require the thermal-hydraulic characteristics of LFRs to be reliable. In the present paper, the Lead-cooled fast reactor Thermal-Hydraulic Analysis Code LETHAC was developed, including the models of pipe, heat exchanger, and pool. To verify the correctness of LETHAC, two experimental facilities and three experimental cases were selected, including GFT and PLOFA tests for NACIE-UP and Test-1 for CIRCE. The calculated results show the same and consistent trend with the experimental data, but there are some discrepancies. It can be found that LETHAC is suitable and reliable in predicting the transient behavior of lead-cooled system.

A Numerical Study on the Reduction of Water Hammering in a Simple Water Supply Pipe System

  • Lim, Ki-Won;Cha, Dong-Jin
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.2
    • /
    • pp.51-61
    • /
    • 2001
  • A numerical study has been conducted to characterize the transient pressure in a simple water supply pipe system with an air chamber by utilizing a commercial code that employs the method of characteristics. Some results produced for validation in the study agree quite well with the previously reported. Several parameters are than varied. Among them are the valve closure time, the wave speed, the static pressure, the polytropic exponent, the air chamber volume, the diameter and the shape of orifice in the air chamber, etc, while the water temperature and velocity are kept constant at $20^\circ{C}$ and 0.8m/s, respectively. Results reported in this parametric study may be useful to understand the unsteady behavior of the system.

  • PDF

Onset of Slugging Criterion Based on Singular Point and Stability Analyses of Transient One-Dimensional Two-Phase Flow Equations of Two-Fluid Model

  • Sung, Chang-Kyung;Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.299-310
    • /
    • 1996
  • A two-step approach has been used to obtain a new criterion for the onset of slug formation : (1) In the first step, a more general expression than the existing models for the onset of slug flow criterion has been derived from the analysis of singular points and neutral stability conditions of the transient one-dimensional two-phase flow equations of two-fluid model. (2) In the second step, introducing simplifications and incorporating a parameter into the general expression obtained in the first step to satisfy a number of physical conditions a priori specified, a new simple criterion for the onset of slug flow has been derived. Comparisons of the present model with existing models and experimental data show that the present model agrees very closely with Taitel & Dukler's model and experimental data in horizontal pipes. In an inclined pipe ($\theta$ =50$^{\circ}$), however, the difference between the predictions of the present model and those of existing models is appreciably large and the present model gives the best agreement with Ohnuki et al.'s data.

  • PDF

Operating characteristics of a heat pipe with two heat sources (두개의 열원이 부착된 히트파이프의 동작 특성)

  • Park, Jong-Heung;No, Hong-Gu;Lee, Jae-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.3
    • /
    • pp.303-315
    • /
    • 1998
  • Numerical and experimental studies on a heat pipe with two heat sources have been performed to investigate the operating characteristics. Numerical analysis was performed based on the cylindrical two-dimensional incompressible laminar flow for the vapor space and the conjugate heat transfer for the entire heat pipe. Experimental study with a 0.45 m length copper-water heat pipe was also performed to validate the numerical modeling for the heat input range from 29 W to 47 W on each heater. As results, the temperature profiles at the outer wall for the single active heat source as well as the temperature profiles for the switching operation between two heat sources are suggested. Due to the axial conduction, it is found that the temperature drop between the evaporator and the condenser appears small when the heat source closer to the condenser is turned on. For the switching operation in the present study, the transient time is about 700s and the temperatures at the locations of both heat source are same in 130s after switching.

Simulation of Gravity Feed Oil for Aeroplane

  • Lu, Yaguo;Huang, Shengqin;Liu, Zhenxia
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.732-736
    • /
    • 2008
  • The traditional method to calculate the gravity feed is to assume that only one tank in fuel system supplies the needed fuel to the engine, and then calculated for the single branch. Actually, all fuel tanks compete for supplying oil. Our method takes into consideration all fuel tanks and therefore, we believe, our method is intrinsically superior to traditional methods and is closer to understanding the real seriousness of the oil supply situation. Firstly, the thesis gives the mathematical model for fuel flow pipe, pump, check valve and the simulation model for fuel tank. On the basis of flow network theory and time difference method, we established a new calculation method for gravity feed oil of aeroplane fuel system, secondly. This model can solve the multiple-branch and transient process simulation of gravity feed oil. Finally, we give a numerical example for a certain type of aircraft, achieved the variations of oil level and flow mass per second of each oil tanks. In addition, we also obtained the variations of the oil pressure of the engine inlet, and predicted the maximum time that the aeroplane could fly safely under gravity feed. These variations show that our proposed method of calculations is satisfactory.

  • PDF

Adaptive Cone-Kernel Time-Frequency Distribution for Analyzing the Pipe-Thinning in the Secondary Systems of NPP (원전 이차계통 파이프 감육상태 분석를 위한 적응 콘-커널 시간-주파수 분포함수)

  • Kim, Jung-Taek;Lee, Sang-Jeong;Lee, Cheol-Kwon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.3
    • /
    • pp.131-137
    • /
    • 2006
  • The secondary system of nuclear power plants consists of sophisticated piping systems operating in very aggressive erosion and corrosion environments, which make a piping system vulnerable to the wear and degradation due to the several chemical components and high flow rate (~10 m/sec) of the coolant. To monitor the wear and degradation on a pipe, the vibration signals are measured from the pipe with an accelerometer For analyzing the vibration signal the time-frequency analysis (TFA) is used, which is known to be effective for the analysis of time-varying or transient signals. To reduce the inteferences (cross-terms) due to the bilinear structure of the time-frequency distribution, an adaptive cone-kernel distribution (ACKD) is proposed. The cone length of ACKD to determine the characteristics of distribution is optimally selected through an adaptive algorithm using the normalized Shannon's entropy And the ACKD's are compared with the results of other analyses based on the Fourier Transform (FT) and other TFA's. The ACKD shows a better signature for the wear/degradation within a pipe and provides the additional information in relation to the time that any analysis based on the conventional FT can not provide.