• Title/Summary/Keyword: Transgenic potato

Search Result 120, Processing Time 0.027 seconds

Resistance to Potato Virus Y Conferred by PVY Replicase Gene Sequence in Transgenic Burley Tobacco (감자바이러스 Y 복제 유전자로 형질전환된 버어리종 연초의 PVY에 대한 저항성 특성)

  • Young Ho Kim;Eun Kyung Park;Soon Yong Chae;Sang Seock Kim;Kyung-Hee Paek;Hye Sun Cho
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.20 no.1
    • /
    • pp.50-56
    • /
    • 1998
  • The complementary DNA (cDNA) of potato virus Y- vein necrosis strain (PVY-VN) replicase gene (Nlb) was transformed into tobacco (Nicotiana tabacum cv. Burley 21) plants. Out of 25 putative transformants regenerated, 3 were resistant to PVY-VN, one highly resistant plant with no symptom until seed harvest time and the other two with mild chlorotic spot symptoms at late stages after infection. No symptom was observed in the highly resistant plant, while mild vein necrotic symptoms were developed on suckers of the moderately resistant plants after seed harvest time, In the first generation (T1) via self fertilization, resistance to susceptibility frequency in transgenic plants from the highly resistant transformant was about 3 : 1, while it was lowered much (about 1:2 and 1:19) in T1 of the moderately resistant transformants. In the second generation (T2) of the highly resistant plant, resistance frequencies were similar to T1, but resistance levels varied greatly and appeared to be decreased. Key words : potato virus Y, viral replicate gene, transgenic tobacco plants, resistance.

  • PDF

Molecular Cloning and Expression of Dihydroflavonol 4-reductase Gene in Tuber Organs of Purple-fleshed Potatoes

  • Kang, Won-Jin;Lee, Yong-Hwa;Kim, Hyun-Soon;Joung, Hyouk;Jeon, Jae-Heung
    • Journal of Applied Biological Chemistry
    • /
    • v.49 no.3
    • /
    • pp.75-81
    • /
    • 2006
  • A full-length cDNA encoding dihydroflavonol 4-reductase (st-dfr) of potato was isolated by rapid amplification of cDNA ends, and their expression was investigated from purple-fleshed potato (Solanum tuberosum L. cv. Jashim). The st-dfr exists as a member of a small gene family and its transcripts was abundant in the order of tuber flesh, stem, leaf, and root. The expressions of st-dfr gene were light inducible and cultivar dependant. Transgenic potato plants harboring antisense st-dfr (AS-DFR) sequences were analyzed. The accumulation of mRNA was nearly completely inhibited as a result of introducing an AS-DFR gene under the control of the 35S CaMV promoter into the red tuber skin Solanum tuberosum L. cv. Desiree. The anthocyanin content of the tuber peels of the transgenic lines was dramatically decreased by up to 70%. The possible production of flavonols in the peels of AS-DFR transgenic potatoes was discussed.

Expression of Lily Chloroplastic Cu,Zn Superoxide Dismutase Enhances Resistance to Erwinia carotovora in Potatoes

  • Kim, Mi-Sun;Kim, Hyun-Soon;Kim, Yoon-Sik;Baek, Kwang-Hyun;Moon, Jae-Sun;Choi, Do-Il;Joung, Hyouk;Jeon, Jae-Heung
    • The Plant Pathology Journal
    • /
    • v.23 no.4
    • /
    • pp.300-307
    • /
    • 2007
  • Previously, a chloroplast-localized Cu,Zn superoxide dismutase (chCu,ZnSOD) was isolated from lily and the sense- and antisense- sequences of the lily chCu,ZnSOD were used to transform potato plants. Two selected lines, the sense- and anti-sense strand of transgenic plants, were further characterized for resistance to Erwinia carotovora, which is a severe pathogen affecting potato plants. Only the sense-strand transgenic potato, which contained less $O_2^{.-}$ and more $H_2O_2$ than wild-type and antisense-strand transgenic plants, showed increased resistance to E. carotovora. Additional studies using $O_2^{.-}$ or $H_2O_2$ scavengers in wild-type, sense-strand, and antisense-strand transgenic plants suggest that resistance to E. carotovora is induced by reduced $O_2^{.-}$ and is not influenced by $H_2O_2$. To the best of our knowledge, this report is the first study suggesting that resistance to E. carotovora is enhanced by reduced $O_2^{.-}$, and not by increased amounts of $H_2O_2$.

Resistance to the Fungal Pathogen Phytophthora infestans of Transgenic Potato Plants Harboring of Chitinase Gene (Chitinase 유전자 도입 형질전환 감자식물체의 역병저항성)

  • Choi, Kyung-Hwa;Yang, Duk-Chun;Kim, Hyun-Soon;Choi, Kyung-Ja;Cho, Kwang-Yeon;Jung, Hyuk
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.3
    • /
    • pp.177-182
    • /
    • 1999
  • A fungal infection assay between normal and transgenic potato harboring chitinase gene in cultivar Belchip was investigated. In the first stage of experiment, seven transgenic lines having 12cm tall were tested for their resistance against potato late blight pathogen Phytophthora infestans by infection with the zoospores, artificially, Susceptibility to potato late blight infection could be classified into three types based on the rate. In terms of resistance to the disease, two lines were higher, two lines were more suppressive, and three lines were similar as compared with the control. In the following experiment, only 2 risistant lines and 1 suppressed line were used to confirm the resistance again. The results of both experiments were similar. Furthermore, two highly resistant transgenic lines grown in field exhibited a higher resistance than control under the conditions of natural ocurrence of the fungal disease.

  • PDF

Production of transgenic potato exhibiting enhanced resistance to fungal infections and herbicide applications

  • Khan, Raham Sher;Sjahril, Rinaldi;Nakamura, Ikuo;Mii, Masahiro
    • Plant Biotechnology Reports
    • /
    • v.2 no.1
    • /
    • pp.13-20
    • /
    • 2008
  • Potato (Solanum tuberosum L.), one of the most important food crops, is susceptible to a number of devastating fungal pathogens in addition to bacterial and other pathogens. Producing disease-resistant cultivars has been an effective and useful strategy to combat the attack of pathogens. Potato was transformed with Agrobacterium tumefaciens strain EHA101 harboring chitinase, (ChiC) isolated from Streptomyces griseus strain HUT 6037 and bialaphos resistance (bar) genes in a binary plasmid vector, pEKH1. Polymerase chain reaction (PCR) analysis revealed that the ChiC and bar genes are integrated into the genome of transgenic plants. Different insertion sites of the transgenes (one to six sites for ChiC and three to seven for bar) were indicated by Southern blot analysis of genomic DNA from the transgenic plants. Expression of the ChiC gene at the messenger RNA (mRNA) level was confirmed by Northern blot analysis and that of the bar gene by herbicide resistance assay. The results obviously confirmed that the ChiC and bar genes are successfully integrated and expressed into the genome, resulting in the production of bialaphos-resistant transgenic plants. Disease-resistance assay of the in vitro and greenhouse-grown transgenic plants demonstrated enhanced resistance against the fungal pathogen Alternaria solani (causal agent of early blight).

Review on the Occurrence and Studies of Potato Viral Diseases in Korea (한국에서의 감자 바이러스병 발생과 그 연구에 대한 고찰)

  • Hahm, Young-Il
    • Research in Plant Disease
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • The occurrence of potato(Sotanum tuberosum) viral diseases caused by Potato virus X(PVX), Potato virus Y (PVY), Potato leafroll virus(PLRV), Potato vims S(PVS), Potato virus M(PVM), Potato virus A(PVA), Potato virus T(PVT), Alfalfa mosic virus(AIMV), Tobacco mosic virus(TMV), Potato mop top virus(PMTV) Tobacco rattle virus(TRV) and Potato spindle tuber viroid(PSTVd), potato witches' broom phytoplasma, have been identified so far in Korea. Major viral diseases such as PVX, PVY and PLRV had been studied more deeply, however, the others are just identified and only partially characterized since the first study on the relation between PVX nucleic acid and virus protein by Kim in 1961. The most studies on potato viral diseases are mainly focused on the problems of seed potato production. The National Alpine Agricultural Experiment Station(NAAES), since it began its activities in 1961, has given special attention to this problem by doing studies to identify, characterize and control potato virus diseases. This effort resulted in the development of new potato virus detection methods as a basis for elaborating new method of control, such as the production of seed potato free of virus and the selection of new virus-resistant transgenic potatoes. The further studies of potato viral diseases required would be fallowings: the continuous monitoring for the occurrence of identified or not identified potato viruses in Korea, the isolation of resistant viral genes, the development of control method for the non-persistently transmitted viruses like PVY, special vectors such as nematode and fungus transmitted viruses, TRV and PMTV and the development of control methods against potato viral diseases by viral cross protection, therapy, transgenic plant, and the use of the agents or molecules, such as virus inhibitors and antiviral proteins, etc., blocking viral replication.

Monitoring of Possible Horizontal Gene Transfer from Transgenic Potatoes to Soil Microorganisms in the Potato Fields and the Emergence of Variants in Phytophthora infestans

  • Kim, Sung-Eun;Moon, Jae-Sun;Kim, Jung-Kyu;Yoo, Ran-Hee;Choi, Won-Sik;Lee, Eun-Na;Lee, Sang-Han;Kim, Sung-Uk
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.6
    • /
    • pp.1027-1031
    • /
    • 2010
  • To examine the possibility of horizontal gene transfer between transgenic potatoes and microorganisms in potato fields, the gene flow from transgenic potatoes containing the nucleoside diphosphate kinase 2 (NDPK2) gene to microorganisms in soils was investigated. The soil samples collected from the potato fields from March to October 2007 were examined by PCR, Southern hybridization, and AFLP fingerprinting. The NDPK2 gene from soil genomic DNAs was not detected by both PCR and Southern hybridization, indicating that gene transfer did not occur in the potato fields. In addition, no discrepancy was found in pathogenicity and noticeable changes for the appearance of variants of Phytophthora infestans in each generation when serial inoculations and the analysis of genomic DNAs by AFLP were conducted. Thus, these data suggest that transgenic potatoes do not give significant impacts on the communities of soil microorganisms and the emergence of variants, although continued research efforts may be necessary to make a decisive conclusion.

Proteomic analysis of dehydroascorbate reductase transgenic potato plants (Dehydroascorbate reductase 과발현 형질전환 감자 식물체의 단백질체 분석)

  • Han, Eun-Heui;Goo, Young-Min;Kim, Yun-Hee;Lee, Shin-Woo
    • Journal of Plant Biotechnology
    • /
    • v.43 no.2
    • /
    • pp.223-230
    • /
    • 2016
  • Ascorbic acid (AsA) is a strong antioxidant/reducing agent that can be converted to dehydroascorbate (DHA) by oxidation in plants. DHA, a very short-lived chemical, is recycled to AsA by dehydroascorbate reductase (DHAR). Previously, DHAR cDNA was isolated from the hairy roots of the sesame plant, and DHAR-overexpressing transgenic potato plants were generated under the control of the CaMV35S promoter (CaMV35S::DHAR). An increase in transgene expression and ascorbate levels were observed in the transgenic plants. In the present study, proteomic analysis revealed that transgenic plants not only accumulated DHAR in their cells, but also induced several other antioxidant enzyme-related proteins during plant growth. These results suggest that DHAR is important for stress tolerance via induction of antioxidant proteins, and could improve stress tolerance in transgenic potato plants.

Development of transgenic potato with improved anthocyanin contents using sweet potato IbMYB1 gene (고구마의 IbMYB1 유전자를 이용한 안토시아닌 고함유 형질전환 감자의 개발)

  • Kim, Yun-Hee;Han, Eun-Hee;Kwak, Sang-Soo;Lee, Shin-Woo
    • Journal of Plant Biotechnology
    • /
    • v.45 no.4
    • /
    • pp.364-368
    • /
    • 2018
  • The R2R3-type protein IbMYB1 transcription factor is a key regulator for anthocyanin biosynthesis in the storage roots of sweet potatoes. It was previously demonstrated that the IbMYB1 expression stimulates anthocyanin pigmentation in tobacco leaves, arabidopsis and storage roots of sweet potatoes. In this study, we generated the transgenic potato plants that express the IbMYB1 genes, which accumulated high levels of anthocyanins under the control of either the tuber-specific patatin (PAT) promoter or oxidative stress-inducible peroxidase anionic 2 (SWPA2) promoter. The PAT-MYB1 transgenic lines exhibited higher anthocyanin levels in the tuber than the empty vector control (EV) or SWPA2-MYB1 plants. When combined, our results indicated that overexpression of the IbMYB1 is a highly promising strategy for the generation of transgenic plants with enhanced tissue specific anthocyanin production.

Tolerance to Potato Soft Rot Disease in Transgenic Potato Expressing Soybean Ferritin Gene (대두 철분결합단백질 유전자 발현 형질전환 감자의 감자무름병 방어 증진효과)

  • Bae, Shin-Chul;Yeo, Yun-Soo;Heu, Sung-Gi;Hwang, Duk-Ju;Byun, Myung-Ok;Go, Seung-Joo
    • Journal of Plant Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.229-233
    • /
    • 2002
  • Ferritin is ubiquitous in bacteria, animals and plants. Ferritin is thought to play two main roles in living cells to provide iron for the synthesis of iron protein such as ferretoxin and cytochromes and to prevent damage from radicals produced by iron/dioxygen interaction. To enhance the resistance of potato to Erwinia carotovora, the soybean ferritin gene was introduced into the potato either under CaMV 35S or hsr203J promoter. Potato transgenic plants were screened by PCR analysis using specific primers to the ferritin gene. Expression of ferritin gene under CaMV 35S and hsr203J promoter in potato transgenic plants was confirmed by northern blot analysis. hsr203J promoter known to pathogen inducible in tobacco drives the induction upon Phytophthora infestan in potato and the transcript level of ferritin gene was extremely high after 24 hours post inoculation. One of transformants under CaMV 35S promoter was increased 2.5 fold than untransformant. Each one of transgenic potato containing gene promoter CaMV 35S and hsr203J-ferrtin fusion exhibited tolerance against potato soft rot.