DOI QR코드

DOI QR Code

Expression of Lily Chloroplastic Cu,Zn Superoxide Dismutase Enhances Resistance to Erwinia carotovora in Potatoes

  • Published : 2007.12.31

Abstract

Previously, a chloroplast-localized Cu,Zn superoxide dismutase (chCu,ZnSOD) was isolated from lily and the sense- and antisense- sequences of the lily chCu,ZnSOD were used to transform potato plants. Two selected lines, the sense- and anti-sense strand of transgenic plants, were further characterized for resistance to Erwinia carotovora, which is a severe pathogen affecting potato plants. Only the sense-strand transgenic potato, which contained less $O_2^{.-}$ and more $H_2O_2$ than wild-type and antisense-strand transgenic plants, showed increased resistance to E. carotovora. Additional studies using $O_2^{.-}$ or $H_2O_2$ scavengers in wild-type, sense-strand, and antisense-strand transgenic plants suggest that resistance to E. carotovora is induced by reduced $O_2^{.-}$ and is not influenced by $H_2O_2$. To the best of our knowledge, this report is the first study suggesting that resistance to E. carotovora is enhanced by reduced $O_2^{.-}$, and not by increased amounts of $H_2O_2$.

Keywords

References

  1. Agrios, G. N. 1997. Plant Pathology. 4th ed. Academic Press, San Diego, USA. 434 pp
  2. Alvarez, M. E., Pennell, R. I., Meijer, P. J., Ishikawa, A., Dixon, R. A. and Lamb, C. 1998. Reactive oxygen intermediates mediate a system signal network in the establishment of plant immunity. Cell 92:773-784 https://doi.org/10.1016/S0092-8674(00)81405-1
  3. Apel, K. and Hirt, H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55:373-99 https://doi.org/10.1146/annurev.arplant.55.031903.141701
  4. Ausubel, F. M., Brent, R, Kingston, R E., Moore, D. D., Seidman, J. G, Smith, J. A and Struhl, K. 1987. Current protocols in molecular biology Greene Publishing Associates and Wiley-Interscience, John Wiley and Sons, New York. 431 pp
  5. Choi, K. H., Yang, D. C., Jeon, J. H., Kim, H. S., Joung, Y. H. and Joung, H. 1999. Expression of chitinase gene in Solanum tuberosum L. J. Plant Biotech. 1:85-90
  6. Chung, E. C., Oh, S. K, Park, J. M. and Choi, D. 2007. Expression and promoter analysis of pepper CaCDPK4 (Capsicum annum calcium dependent protein kinase 4) during plant defense response to imcompatible pathogen. Plant Pathol. J. 23:76-89 https://doi.org/10.5423/PPJ.2007.23.2.076
  7. Cross, A. R and. Jones, O. T. 1986. The effect of the inhibitor diphenylene iodonium on the superoxide-generating system of neutrophils. Specific labelling of a component polypeptide of the oxidase. Biochem. J. 237:111-116 https://doi.org/10.1042/bj2370111
  8. Doke, N. and Tomiyama, K. 1980. Effect of hyphal with components from Phytophthora infestans on protoplasts of potato tuber tissues. Physiol. Plant Pathol. 16: 169-176 https://doi.org/10.1016/0048-4059(80)90031-4
  9. Fink, R. C. and Scandalios, J. G. 2002. Molecular evolution and structure-function relationships of the superoxide dismutase gene families in Angiosperms and their relationship to other eukaryotic and prokaryotic superoxide dismutases, Arch. Biochem. Biophys. 399:19-36 https://doi.org/10.1006/abbi.2001.2739
  10. Gupta, A S., Heinen, J. L., Holaday, A. S., Burke, J. J. and Allen, R. D. 1993. Increased Resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide disrnutase, Proc. Natl. Acad Sci. USA 90:1629-1633
  11. Gutteridge, J. M. C. and Halliwell, B. 2000. Free radicals and antioxidants in the year 2000: A historical look to the future. Ann. NY Acad. Sci. 899:136-147 https://doi.org/10.1111/j.1749-6632.2000.tb06182.x
  12. Jabs, T., Dietrich, R. A and Dangl, J. L. 1996. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 27:1853-1856
  13. Joo, J. H., Bae, Y. S. and Lee, J. S. 2001. Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol. 126: 1055-1060 https://doi.org/10.1104/pp.126.3.1055
  14. Kim, H. J. and Jeun, Y. C. 2007. Infection structures on the infected leaves of potato pre-incubated with bacterial strains and DL-3-amino butyric acid after challenge inoculation with Phytophthora infestans. Plant Pathol. J. 23:203-209 https://doi.org/10.5423/PPJ.2007.23.3.203
  15. Kim, M. S., Kim, H. S., Kim, Y. S., Baek, K H., Oh, H. W., Hahn, K. W., Bae, R N., Lee, I. J., Joung, H. and Jeon, J. H. 2007. Superoxide anion regulates plant growth and tuber development of potato. Plant Cell Rep. 26:1717-1725 https://doi.org/10.1007/s00299-007-0380-1
  16. Lamb, C. and R. A. Dixon. 1997. The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:251-275 https://doi.org/10.1146/annurev.arplant.48.1.251
  17. Levine, A, Tenhaken, R, Dixon, R. A and Lamb, C. 1994. $H_{2}O_{2}$ from the oxidative burst orchestrates the plant hypersensitive response. Cell 79:583-593 https://doi.org/10.1016/0092-8674(94)90544-4
  18. Liszkay, A., van der Zalm, E. and Schopfer, P. 2004. Production of reactive oxygen intermediates ($O_{2}$-, $H_{2}O_{2}$, and -OH) by maize roots and their role in wall loosening and elongation Growth. Plant Physiol. 136:3114-3123 https://doi.org/10.1104/pp.104.044784
  19. McAinsh, M. R., Clayton, H., Mansfield, T. A. and Hetherington, A. M. 1996 Changes in stomatal behavior and guard cell cytosolic free calcium in response to oxidative stress. Plant Physiol. 111: 1031-1042 https://doi.org/10.1104/pp.111.4.1031
  20. Mittler, R., Vanderauwera, S., Gollery, M. and Van Breusegem, F. 2004. Reactive oxygen gene network of plants. Trends Plant Sci. 9:1360-1385
  21. Miura, Y, Yoshioka, H. and Doke, N. 1995. An autophotographic determination of the active oxygen generation in potato tuber discs during hypersensitive response to fungal infection or elicitor. Plant Sci. 105:45-52 https://doi.org/10.1016/0168-9452(94)04040-N
  22. Montesano, M., Hyytiainen, H., Wettstein, R. and PaIva, E. T. 2003. A novel potato defence-related alcohol:NADP+ oxidoreductase induced in response to Erwinia carotovora. Plant Mol. Biol. 52:177-189 https://doi.org/10.1023/A:1023981631596
  23. Orozco-Cardenas, M. L., Narvaez-Vasquez, J. and Ryan, C. A. 2001. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13: 179-191 https://doi.org/10.1105/tpc.13.1.179
  24. Park, J. Y., Kim, H. S., Youn, J. W., Kim, M. S., Kim, K. S., Joung, H. and Jeon, J. H. 2006. Cloning of superoxide dismutase (SOD) gene of lily 'Marcopolo' and expression in transgenic potatoes. Agric. Chem. Biotechnol. 49: 1-7
  25. Prasad, T. K., Anderson, M. D., Martin, B. A. and Stewart, C. R. 1994. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6:65-74 https://doi.org/10.1105/tpc.6.1.65
  26. Rantakari, A., Virtaharju, O., Vahamiko, S., Taira, S., PaIva, E. T., Saarilahti, H. T. and Romantschuk, M. 2001. Type III secretion contributes to the pathogenesis of the soft-rot pathogen Erwinia carotovora:partial characterization of the hrp gene cluster. Mol. Plant Microbe Interact. 14:962-968 https://doi.org/10.1094/MPMI.2001.14.8.962
  27. Takahashi, M. A. and Asada, K. 1983. Superoxide anion permeability of phospholipid membranes and chloroplast thylakoids. Arch. Biochem. Biophys. 226:558-566 https://doi.org/10.1016/0003-9861(83)90325-9
  28. Van der Biezen, E. A. and Jones, J. D. G 1998. Plant diseaseresistance proteins and the gene-for-gene concept. Trends in Biochem. Sci. 23:454-456 https://doi.org/10.1016/S0968-0004(98)01311-5
  29. Wu, G., Shortt, B. J., Lawrence, E. B., Fitzsimmons, J. L. K. C., Levine, E. B., Raskin, I. and Shah, D. M. 1997. Activation of host defense mechanisms by elevated production of H202 in transgenic plants. Plant Physiol. 115:427-435 https://doi.org/10.1104/pp.115.2.427
  30. Zimmermann, P. and Zentgraf, U. 2005. The correlation between oxidative stress and leaf senescence during plant development. Cell Mol. Biol. Lett. 10:515-534

Cited by

  1. Gene Expression of the Antimicrobial Peptide Bombinin Increases the Resistance of Transgenic Tobacco Plants to Phytopathogens vol.54, pp.7, 2018, https://doi.org/10.1134/S0003683818070086