• Title/Summary/Keyword: Transgenic lettuce

Search Result 19, Processing Time 0.029 seconds

Molecular breeding of herbicide resistant transgenic plants with bromoxynil specific nitrilase gene (Bromoxynil 특이성 nitrilase 유전자를 이용한 제초제 저항성 형질 전환 식물의 분자육종)

  • Min, Bok-Kee;Park, Eun-Sung;Park, Yearn-Hung;Song, Jae-Young;Lee, Se-Yong
    • Applied Biological Chemistry
    • /
    • v.37 no.4
    • /
    • pp.248-254
    • /
    • 1994
  • Bromoxynil is an antidicot herbicide widely used on cereal crops and has a short half life in the soil. A bxn gene, encoding a specific nitrilase that converts bromoxynil to its primary metabolite 3,5-dibromo-4-hydroxybenzoic acid, was inserted in plant binary vector pGA482, and then introduced into tobacco and lettuce plants via Agrobacterium mediated leaf-disc transformation method. Transgenic plants with the bxn gene were selected by kanamycin and regenerated to whole plants. The regenerated transgenic plants were determined level of expression of bxn gene by Northern blot analysis. Leaf-disc analysis and pot-assay confirmed that the transgenic tobacco and lettuce plants were resistant to high doses of bromoxynil.

  • PDF

Transgenic lettuce (Lactuca sativa L.) with increased vitamin C levels using GalUR gene (GalUR 유전자를 이용한 비타민 C 증대 상추 (Lactuca sativa L.) 형질전환체 개발)

  • Lim, Mi-Young;Cho, Yi-Nam;Chae, Won-Ki;Park, Young-Soo;Min, Byung-Whan;Harn, Chee-Hark
    • Journal of Plant Biotechnology
    • /
    • v.35 no.2
    • /
    • pp.115-120
    • /
    • 2008
  • L-Ascorbic acid (vitamin C) in vegetables is an essential component of human nutrition. The objective is to transform lettuce (Lactuca sativa L.) with GalUR gene that is involved in the vitamin C biosynthesis. The cotyledons of Hwoahong (Nongwoo Bio Co.) were used to induce the callus and shoot under the selection media with MS + 30 g/L Sucrose + 0.5 mg/L BAP + 0.1 mg/L NAA + 100 mg/L kanamycin + 200 mg/L lilacillin, pH 5.2. The shoot was developed from the cut side of the explants after 3 weeks on the selection media. We successfully transformed the lettuce with GaIUR gene and analyzed the levels of vitamin C. We found that some of the lettuce transgenic lines contained higher levels of vitamin C compared with the normal one (non-transformed). Especially, some of $T_1$ lettuces inserted by GalUR showed about $3{\sim}4$ times higher content of vitamin C compared to the non-transformed lettuce. This data support the previously work performed with GLOase transgenic $T_1$ lettuces from which several times higher content of vitamin C were identified. The $T_2$ lettuces with high content of vitamin C have been selected for further analysis.

Transformation of PAT gene into Lettuce (Lactuca sativa L.) using Agrobacterium tumefaciens (Agrobacterium tumefaciens를 이용한 상추 (Lactuca sativa L.)의 PAT유전자 형질전환)

  • 류정아;김창길;이현숙;최경배;양덕춘
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.4
    • /
    • pp.197-200
    • /
    • 2001
  • Agrobacterium tumefaciens MP90 harboring PAT (phosphinothricin acetyltransferase) and NPTII-GUS gene were used for the genetic transformation of lettuce (Lactuca Sativa L.). Shoot regeneration from cotyledon explants were obtained from the MS medium supplemented with 0.1 mg.L$^{-1}$ NAA, 1.0 mg.L$^{-1}$ 2ip, 50 mg.L$^{-1}$ kanamycin and 500 mg.L$^{-1}$ carbenicillin after cocultivation with A. tumefaciens for 2 days. Kanamycin resistance test of transgenic plants indicated that the NPTII gene was integrated into the lettuce genome and was stably expressed. PCR and northern blot analysis indicated that bialaphos resistance gene (PAT) was stably integrated into the lettuce genome. The transgenic plant sprayed with Basta (1500x) remained healthy with continuous growth, while the control group exhibited fatality.

  • PDF

Transgenic Lettuce Expressing Chalcone Isomerase Gene of Chinese Cabbage Increased Levels of Flavonoids and Polyphenols

  • Han, Eun-Hyang;Lee, Ji-Sun;Lee, Jae-Woong;Chung, In-Sik;Lee, Youn-Hyung
    • Horticultural Science & Technology
    • /
    • v.29 no.5
    • /
    • pp.467-473
    • /
    • 2011
  • Flavonoid are large group of the polyphenolic compounds which are distinguished by an aromatic or phenolic ring structure and the phenolic compounds are induced by microbial infection, ultraviolet radiation, temperature and chemical stress. They are known for their antioxidant activity, anti-allergic, anti-inflammatory, anti-microbial and anti-cancer activities. In this study, changes in flavonoid content were investigated using heterologous chalcone isomerase (CHI) expression system. Also, phenolic compounds level was measured to examine the relation between flavonoids and phenols contents. Explants of lettuce (Lactuca sativa L.) were transformed with Agrobacterium tumefaciens LBA 4404 strain containing pFLH-CHI (derived from pPZP2Ha3) vector constructed with CHI gene from Brassica rapa. The putative transgenic plants were confirmed by genomic DNA PCR analysis. Also the transcription levels of the gene were analyzed by semi-quantitative RT-PCR with gene specific primers. The total flavonoid contents were increased at $T_0$ and $T_1$ generations over 1.4 and 4.0 fold, respectively. Total phenol contents also increased at $T_1$ generation. These results indicate that CHI gene plays an important role to regulate the accumulation of flavonoids and its component changes.

Overexpression of Arabidopsis Homogentisate Phytyltransferase or Tocopherol Cyclase Elevates Vitamin E Content by Increasing γ-tocopherol Level in Lettuce (Lactuca sativa L.)

  • Lee, Koeun;Lee, Sa Mi;Park, Sang-Ryoung;Jung, Jinwook;Moon, Joon-Kwan;Cheong, Jong-Joo;Kim, Minkyun
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.301-306
    • /
    • 2007
  • Tocopherols, essential components of the human diet, are synthesized exclusively by photosynthetic organisms. To increase tocopherol content by increasing total flux to the tocopherol biosynthetic pathway, genes encoding Arabidopsis homogentisate phytyltransferase (HPT/V-TE2) and tocopherol cyclase (TC/VTE1) were constitutively overexpressed in lettuce (Lactuca sativa L.). Total tocopherol content of the transgenic plants overexpressing either of the genes was increased by more than 2-fold mainly due to an increase in ${\gamma}$-tocopherol. However, chlorophyll content in the HPT/VTE2 and TC/VTE1 transgenic lines decreased by up to 20% and increased by up to 35%, respectively (P < 0.01). These results demonstrate that manipulation of the tocopherol biosynthetic pathway can increase or decrease chlorophyll content depending on the gene introduced.

Transformation of Lettuce (Lactuca sativa L.) Using Cold Regulated Gene (BN115) (저온 관련 유전자를 이용한 상추 (Lactuca sativa L.)의 형질전환)

  • 정재훈;양덕춘;장홍기;백기엽
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.1
    • /
    • pp.7-12
    • /
    • 2000
  • Explants of lettuce (Lactuca sativa L.) were co-cultivated with Agrobacterium tumifacience GV 3101 strain containing nptII gene and cold regulated gene (BN115) from Brassica napus for transformation. Multiple shoots were obtained from the explants in the selection medium (MS basal medium supplemented with 100 mg/L kanamycin, 500 mg/L carbenicillin, 0.1 mg/L NAA, 0.5 mg/L kinetin) after 3 to 4 weeks of co-culture. The putative transgenic shoots were transferred to rooting medium (1/2 MS basal medium supplemented with 100 mg/L kanamycin and 250 mg/L carbenicillin). The selected shoots were tested with PCR analysis using nptll, BN115 primers whether cold-regulated gene was introduced to genome of the plants. The vir G primers were particularly used to check contamination of Agrobacterium during PCR analysis. The nptII and BN115 primers produced the specific PCR bands in the putative transgenic lines but the vir G primers did not. These results confirmed that the PCR products were not the result of contamination with Agrobacterium. Additionally the Southern analysis of the PCR products and RT-PCR analysis proved that the cold-regulated gene was successfully integrated and transcribed in the putative transgenic lettuce plants.

  • PDF

Expression of $\beta$-Glucuronidase (GUS) Gene in Transgenic Lettuce (Lactuca sativa L.) and Its Progeny Analysis (형질전환된 상추내에서 GUS 유전자의 발현 및 후대검정)

  • CHUNG, Jae Dong;KIM, Chang Kil;KIM, Kyung Min
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.4
    • /
    • pp.225-229
    • /
    • 1998
  • Agrobacterium tumefaciens LBA 4404 harboring binary vector pBI 121 was used for genetic transformation of lettuce(Lactuca Sativa L.). Optimal shoot regeneration from cotyledon explants was obtained in MS medium supplemented with 0.1mg/L NAA and 1.0 mg/L 2ip. In this condition, cotyledon explants were cocultivated with A, tumefaciens for 2 days, and then transferred to selection medium supplemented with 50 mg/L kanamycin and 500 mg/L carbenicillin. These explants were subsequently subcultured every 2 weeks on shoot induction medium. PCR analysis indicated that the GUS gene was stably integrated into the nuclear genome of lettuce. Histochemical analysis based on the enzymatic activity of the CUS protein showed that GUS activity was associated with vascular tissue in leaves and roots. Progenies of Ro plants demonstrated a linked monogenic segregation for GUS gene.

  • PDF

Freeze Tolerance Enhanced by Antifreeze Protein in Plant

  • Hwang, Cheol-Ho;Park, Hyun-Woo;Min, Sung-Ran;Liu, Jang-Ryol
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.4
    • /
    • pp.339-343
    • /
    • 2000
  • When plants are exposed to subfreezing temperatures ice crystals are forming within extracelluar space in leaves. The growth of ice crystal is closely related to the degree of freezing injury. It was shown that an antifreeze protein binds to an ice nucleator through hydrogen bonds to prevent growth of ice crystal and also reduces freezing damage. The antifreeze proteins in plants are similar to PR proteins but only the PR proteins induced upon cold acclimation were shown to have dual functions in antifreezing as well as antifungal activities. Three of the genes encoded for CLP, GLP, and TLP were isolated from barley and Kentucky bluegrass based on amino acid sequence revealed after purification and low temperature-inducibility as shown in analysis of the protein. The deduced amino acid of the genes cloned showed a signal for secretion into extracellular space where the antifreezing activity sup-posed to work. The western analysis using the antisera raised against the antifreeze proteins showed a positive correlation between the amount of the protein and the level of freeze tolerance among different cultivars of barely. Besides it was revealed that TLP is responsible for a freeze tolerance induced by a treatment of trinexapac ethyl in Kentucky bluegrass. Analysis of an overwintering wild rice, Oryza rufipogon also showed that an acquisition of freeze tolerance relied on accumulation of the protein similar to CLP. The more direct evidence for the role of CLP in freeze tolerance was made with the analysis of the transgenic tobacco showing extracellular accumulation of CLP and enhanced freeze tolerance measured by amount of ion leakage and rate of photosynthetic electron transport upon freezing. These antifreeze proteins genes will be good candidates for transformation into crops such as lettuce and strawberry to develop into the new crops capable of freeze-storage and such as rose and grape to enhance a freeze tolerance for a safe survival during winter.

  • PDF

Current status on plant molecular farming via chloroplast transformation (엽록체 형질전환 유래 분자 농업의 연구 동향)

  • Min, Sung-Ran;Jeong, Won-Joong;Kim, Suk-Weon;Lee, Jeong-Hee;Chung, Hwa-Jee;Liu, Jang-R.
    • Journal of Plant Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.275-282
    • /
    • 2010
  • Chloroplast transformation in higher plants offers many attractive advantages over nuclear transformation, including a high-level accumulation of foreign proteins, multi-gene expression in single transformation event via transgene stacking in operons and no position effect due to site-specific integration of transgenes by homologous recombination. Most importantly, chloroplast transgenic plants are eco-friendly because their transgenes are maternally inheritance in most crop plants. However, chloroplast transformation system has limited success in crops alike nuclear transformation. In the past two decades, great progress has been made to overcome the limitations of chloroplast transformation, thus expending chloroplast bioreactor to several important crops including soybean, carrot, lettuce, and oilseed. Therefore, it has become possible that chloroplast transformation of crops can be used not only for the improvement of agronomic traits, but also for the production of vaccines and high valuable therapeutic proteins in pharmaceutical industry.