DOI QR코드

DOI QR Code

Transgenic lettuce (Lactuca sativa L.) with increased vitamin C levels using GalUR gene

GalUR 유전자를 이용한 비타민 C 증대 상추 (Lactuca sativa L.) 형질전환체 개발

  • 임미영 ((주)농우바이오 생명공학연구소) ;
  • 조이남 ((주)농우바이오 생명공학연구소) ;
  • 채원기 ((주)농우바이오 생명공학연구소) ;
  • 박영수 ((주)농우바이오 생명공학연구소) ;
  • 민병환 (경북대학교 생명자원과학대학 식물자원학과) ;
  • 한지학 ((주)농우바이오 생명공학연구소)
  • Published : 2008.06.30

Abstract

L-Ascorbic acid (vitamin C) in vegetables is an essential component of human nutrition. The objective is to transform lettuce (Lactuca sativa L.) with GalUR gene that is involved in the vitamin C biosynthesis. The cotyledons of Hwoahong (Nongwoo Bio Co.) were used to induce the callus and shoot under the selection media with MS + 30 g/L Sucrose + 0.5 mg/L BAP + 0.1 mg/L NAA + 100 mg/L kanamycin + 200 mg/L lilacillin, pH 5.2. The shoot was developed from the cut side of the explants after 3 weeks on the selection media. We successfully transformed the lettuce with GaIUR gene and analyzed the levels of vitamin C. We found that some of the lettuce transgenic lines contained higher levels of vitamin C compared with the normal one (non-transformed). Especially, some of $T_1$ lettuces inserted by GalUR showed about $3{\sim}4$ times higher content of vitamin C compared to the non-transformed lettuce. This data support the previously work performed with GLOase transgenic $T_1$ lettuces from which several times higher content of vitamin C were identified. The $T_2$ lettuces with high content of vitamin C have been selected for further analysis.

사람은 채소를 통해 필수영양소인 L-Ascorbic acid (vitamin C)를 공급받는다. 본 실험의 목적은 비타민 C 생합성 유전자인 GalUR 유전자를 상추 (Lactuca sativa L.)에 형질전환 하고자 실시하였다. (주)농우바이오의 화홍적축면 상추의 자엽 절편체를 선발배지 (MS + 30 g/L Sucrose + 0.5 mg/L BAP + 0.1 mg/L NAA + 100 mg/L Kanamycin + 200 mg/L Lilacillin, pH 5.2.)에 치상하여 3주 경과후 자엽 절편체의 절단면에서 callus와 신초가 형성되었다. 그 결과 GalUR 유전자로 상추형질전환을 성공하였고 비타민 C 함량을 분석하였다. 대조구에 비하여 상추 형질전환체 line에서 높은 함량의 비타민 C 특히, GalUR 유전자가 삽입된 $T_1$ 중 일부는 비형질전환체에 비해 $3{\sim}4$배 높은 비타민 C 함량을 나타내었다. 이 결과는 GLOase 유전자 형질전환 상추 $T_1$ 세대에서 고함량의 비타민 C를 함유한 결과와 일치한다. 이런 결과를 기초로 하여 비타민 C 고함량 $T_2$ line을 선발하였다.

Keywords

References

  1. Agius F., Gonz lez-Lamothe R., Caballero J.L., Munoz-Blanco J., Botella M.A., Valpuesta V. (2003) Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. nature biotechnology. 21: 177-181 https://doi.org/10.1038/nbt777
  2. Cho EA, Lee CA, Kim YS, Baek SH, Reyes BG, Yun SJ (2005) Expression of ${\gamma}$-tocopherol methyltransferase transgene improves tocopherol composition in lettuce (Latuca sativa L.) Molecules and cells 19(1): 16-22
  3. Conkin PL, Pallanca JE, Last RL, Smirnoff N (1997) Lascorbic acid metabolism in the ascorbate-deficient Arabidopsis mutant vct1. Plant Physiol. 115: 1277-1285
  4. Isherwood FA, Mapson LW (1962) Ascorbic acid metabolism in plants. Part II. Biosynthesis. Annu Rev Plant Physiol 13: 329-350 https://doi.org/10.1146/annurev.pp.13.060162.001553
  5. Jain AK, Nessler CL (2000) Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants. Molecular Breeding 6: 73-78 https://doi.org/10.1023/A:1009680818138
  6. Kim BK, Park SY, Jeon BY, Hwang DY, Min BW (2004) Metabolic Engineering increased vitamin C levels in lettuce by overexpression of a $L-Gulono-\gamma-lactone$ oxidase. J. Kor. Soc. Hort. Sci. 45(1): 16-20
  7. Kim MJ, Baek SH, Yoo NH, Yun SJ (2000) Transformation of Arabidopsis gamma-Tocopherol Methyltransferase into Lettuce (Lactuca savita L.) Korea J Plant Tissue Culture 27: 435-439
  8. Kim SH, Nou IS, Choi CS, Kang KK (2001) Transformation of Lettuce (Lactuca sativa L.) Using Iron Storage Protein Ferritin Gene. Korea J Plant Tissue Culture 28(3): 147-151
  9. Kim YS, Kwon TH (1999) Establishment of efficient regeneration system through in vitro culture of Lettuce (Lactuca sativa). Plant Res 2: 16-21
  10. Kim YS, Kim MY, Kwon TH, Yang MS (2003) Production of hGM-CSF from Cell Suspension Culture of Transformed Lettuce Using Agrobacterium-mediated Transformation System. Korea J Plant Tissue Culture 30(1): 97-102
  11. Moser U., Hornig D. (1982) High intakes of vitamin C: A contributor to oxalate formation in man. TIPS-December 480-48
  12. Murashige, T. and Skoog F. (1962) A revised medium for rapid growth and bioassays with tabacco tissue culture. Physiol Plant 15: 473-479 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  13. Ostergaad J, Persiau G, Davey MW, Bauw G, Van Montagu M (1997) Isolation of a cDNA coding for $L-Gulono-\gamma-lactone$ dehydrogenase, an enzyme involved in the biosynthesis of ascorbic acid in plants. Purification, characterization, cDNA cloning, and expression in yeast. J Biol Chem 272: 30009-30016 https://doi.org/10.1074/jbc.272.48.30009
  14. Smirnoff N (1996) The function and metabolism of ascorbic acid in plants. Ann Bot 78: 661-669 https://doi.org/10.1006/anbo.1996.0175
  15. Southern, E (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503-512 https://doi.org/10.1016/S0022-2836(75)80083-0
  16. Valpuesta V, Botella MA (2004) Biosynthesis of L-ascorbic acid in plants: new pathways for an old antioxidant. TREND in Plant Science 9(12): 573-577 https://doi.org/10.1016/j.tplants.2004.10.002
  17. Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393: 365-369 https://doi.org/10.1038/30728

Cited by

  1. Transgenic tomato plants expressing strawberry d-galacturonic acid reductase gene display enhanced tolerance to abiotic stresses vol.10, pp.2, 2016, https://doi.org/10.1007/s11816-016-0392-9