Overexpression of Arabidopsis Homogentisate Phytyltransferase or Tocopherol Cyclase Elevates Vitamin E Content by Increasing γ-tocopherol Level in Lettuce (Lactuca sativa L.)

  • Lee, Koeun (School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Lee, Sa Mi (School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Park, Sang-Ryoung (School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Jung, Jinwook (School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Moon, Joon-Kwan (School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Cheong, Jong-Joo (School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Kim, Minkyun (School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University)
  • Received : 2007.04.05
  • Accepted : 2007.06.11
  • Published : 2007.10.31

Abstract

Tocopherols, essential components of the human diet, are synthesized exclusively by photosynthetic organisms. To increase tocopherol content by increasing total flux to the tocopherol biosynthetic pathway, genes encoding Arabidopsis homogentisate phytyltransferase (HPT/V-TE2) and tocopherol cyclase (TC/VTE1) were constitutively overexpressed in lettuce (Lactuca sativa L.). Total tocopherol content of the transgenic plants overexpressing either of the genes was increased by more than 2-fold mainly due to an increase in ${\gamma}$-tocopherol. However, chlorophyll content in the HPT/VTE2 and TC/VTE1 transgenic lines decreased by up to 20% and increased by up to 35%, respectively (P < 0.01). These results demonstrate that manipulation of the tocopherol biosynthetic pathway can increase or decrease chlorophyll content depending on the gene introduced.

Keywords

Acknowledgement

Supported by : Korean Ministry of Science and Technology

References

  1. Arnon, D. I. (1949) Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol. 24, 1−15
  2. Cheng, Z., Sattler, S., Maeda, H., Sakuragi, Y., Bryant, D. A., et al. (2003) Highly divergent methyltransferases catalyze a conserved reaction in tocopherol and plastoquinone synthesis in Cyanobacteria and photosynthetic eukaryotes. Plant Cell 15, 2343−2356
  3. Cho, E. A., Lee, C. A., Kim, Y. S., Baek, S. H., Reyes, B. G., et al. (2005) Expression of ${\gamma}-tocopherol$ methyltransferase transgene improves tocopherol composition in lettuce (Lactuca sativa L.). Mol. Cells 19, 16−22
  4. Chun, J. Y., Lee, J. S., Ye, L., Exler, J., and Eitenmiller, R. R. (2006) Tocopherol and tocotrienol contents of raw and processed fruits and vegetables in the United States diet. J. Food Comp. Anal. 19, 196−204
  5. Collakova, E. and DellaPenna, D. (2001) Isolation and functional analysis of homogentisate phytyltransferase from Synechocystis sp. PCC6803 and Arabidopsis. Plant Physiol. 127, 1113−1124
  6. Collakova, E. and DellaPenna, D. (2003) Homogentisate phytyltransferase activity is limiting for tocopherol biosynthesis in Arabidopsis. Plant Physiol. 131, 632−642
  7. DellaPenna, D. (2005) A decade of progress in understanding vitamin E synthesis in plants. J. Plant Physiol. 162, 729−737
  8. DellaPenna, D. and Last, R. L. (2006) Progress in the dissection and manipulation of plant vitamin E biosynthesis. Physiol. Plantarum 126, 356−368
  9. DellaPenna, D. and Pogson, B. J. (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Annu. Rev. Plant Biol. 57, 711−738
  10. Eenennaam, A. L., Lincholn, K., Durrett, T. P., Valentin, H. E., Shewmaker, C. K., et al. (2003) Engineering vitamin E content: From Arabidopsis mutant to soy oil. Plant Cell 15, 3007−3019
  11. Grusak, M. A. (1999) Genomics-assisted plant improvement to benefit human nutrition and health. Trends Plant Sci. 4, 164− 166
  12. Hirschberg, J. (1999) Production of high-value compounds: carotenoids and vitamin E. Curr. Opin. Biotech. 10, 186−191
  13. Kamal-Eldin, A. and Appelqvist, L. A. (1996) The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31, 671−701
  14. Kanwischer, M., Porfirova, S., Bergmuller, E., and Dormann, P. (2005) Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiol. 137, 713−723
  15. Kim, B. K., Park, S. Y., Jeon, B. Y., Hwang, D. Y., and Min, B. W. (2004) Metabolic engineering increased vitamin C levels in lettuce by overexpression of a $L-gulono-{\gamma}-lactone$ oxidase. J. Kor. Soc. Hort. Sci. 45, 16−20
  16. Kim, J. H. and Botella, J. R. (2004) Etr 1-1 gene expression alters regeneration patterns in transgenic lettuce stimulating root formation. Plant Cell Tiss. Org. 78, 69−73 https://doi.org/10.1023/B:TICU.0000020430.08558.6e
  17. Kim, Y. J., Seo, H. Y., Park, T. I., Baek, S. H., Shin, W. C., et al. (2005) Enhanced biosynthesis of ${\alpha}-tocopherol$ in transgenic soybean by introducing ${\gamma}-TMT$ gene. J. Plant Biotechnol. 7, 203−209
  18. Kumar, R., Raclaru, M., SchuBeler, T., Gruber, J., Sadre, R., et al. (2005) Characterization of plant tocopherol cyclases and their overexpression in transgenic Brassica napus seeds. FEBS Lett. 579, 1357−1364
  19. Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15, 473−497
  20. Porfirova, S., Bergmuller, E., Tropf, S., Rainer, L., and Dormann, P. (2002) Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proc. Natl. Acad. Sci. USA 99, 12495−12500
  21. Rise, M., Cojocaru, M., Gottlieb, H. E., and Goldschmidt, E. E. (1989) Accumulation of ${\alpha}-tocopherol$ in senescing organs as related to chlorophyll degradation. Plant Physiol. 89, 1028−1030
  22. Savidge, B., Weiss, J. D., Wong, Y. H., Lassner, M. W., Mitsky, T. A., et al. (2002) Isolation and characterization of homogentisate phytyltransferase genes from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol. 129, 321−332
  23. Shintani, D. K. (2006) Engineering plants for increased nutrition and antioxidant content through the manipulation of the vitamin E pathway. Genet. Eng. 27, 231−242
  24. Shintani, D. K., Cheng, Z., and DellaPenna, D. (2002) The role of 2-methyl-6-phytylbenzoquinone methyltransferase in determining tocopherol composition in Synechocystis sp. PCC6803. FEBS Lett. 511, 1−5
  25. Shintani, D. K. and DellaPenna, D. (1998) Elevating the vitamin E content of plants through metabolic engineering. Science 282, 2098−2100
  26. Traber, M. G. and Sies, H. (1996) Vitamin E in humans: demand and delivery. Annu. Rev. Nutr. 16, 321−347
  27. Wroblewski, T., Tomczak, A., and Michelmore, R. (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol. J. 3, 259−273