• 제목/요약/키워드: Transgenic Chicken

검색결과 59건 처리시간 0.026초

Human extracellular superoxide dismutase (EC-SOD) expression in transgenic chicken

  • Byun, Sung June;Ji, Mi-Ran;Jang, Ye-Jin;Hwang, A-In;Chung, Hee Kyoung;Kim, Jeom Sun;Kim, Kyung-Woon;Chung, Hak-Jae;Yang, Byoung-Chul;Jeon, Iksoo;Park, Jin-Ki;Yoo, Jae Gyu;Kim, Tae-Yoon
    • BMB Reports
    • /
    • 제46권8호
    • /
    • pp.404-409
    • /
    • 2013
  • Extracellular superoxide dismutase (EC-SOD) is a metallo-protein and functions as an antioxidant enzyme. In this study, we used lentiviral vectors to generate transgenic chickens that express the human EC-SOD gene. The recombinant lentiviruses were injected into the subgerminal cavity of freshly laid eggs. Subsequently, the embryos were incubated to hatch using phases II and III of the surrogate shell ex vivo culture system. Of 158 injected embryos, 16 chicks (G0) hatched and were screened for the hEC-SOD by PCR. Only 1 chick was identified as a transgenic bird containing the transgene in its germline. This founder (G0) bird was mated with wild-type hens to produce transgenic progeny, and 2 transgenic chicks (G1) were produced. In the generated transgenic hens (G2), the hEC-SOD protein was expressed in the egg white and showed antioxidant activity. These results highlight the potential of the chicken for production of biologically active proteins in egg white.

외부유전자의 전이에 의한 배아세포와 트란스젠닉 가금 생산의 가능성 (Possible Production of Transgenic Chicken by Transferring Foreign Genes and Germ Cells)

  • Fujihara, N.
    • 한국가금학회지
    • /
    • 제26권2호
    • /
    • pp.119-129
    • /
    • 1999
  • In recent years, numerous researches have been carried out in author's laboratory to develop several kinds of methods for producing transgened chicken, leaving a lot of new findings. Some of them are very useful to search for new approaches necessary to improve the efficiency of hatchability and the survival rate of developing trasgened embryos. The results obtained hitherto might be summarized as follows: (1) foreign gene(Lac Z/ Miw Z) introduced into blastodermal cells of developing embryos was successfully transferred to embryos, leading to the production of primordial germ cells(PGCs) carrying foreign DNA. However, hatched hickens failed to show the incorporation of introduced gene into the gonads. (2) When foreign gene was introduced into germinal crescent region (GCR), the gene was also efficiently incorporated into germ cells, resulting in the production of transgened chickens(offspring) which produced fruther offspring having foreign gene in the gonads. In this case, 2nd and 3rd generations of chickens were obtained through the reproduction of transgened birds. (3) In another way, the gene was injected into blood vessels of developing embryos at stage 13∼15, creating PGCs having foreign gene, and produced some transgened chickens. In this work, the PGCs were transfered between embryos, resulting in the production of transgenic chickens. (4) in these experiments, PGCs were effectively employed for producing transgenic birds, developing some kinds of chimeric chickens from homo- or hetero-sexual transfer of the PGCs from embryos. This means that the gonads from donor PGCs developed in some degree to the stage of hatching. However, these gonads showed slightly abnormal tissues similar to ovotestis like organs through histological examination. (5) Avian Leukosis Virus(ALV) induced B cell line(DT40) successfully carried foreign genes into chicken embryos, suggesting the possibility of the cells as a vector in this field of study in the future. (6) Inter-embryonic transfer of the PGCs also gave us some.

  • PDF

Germ-line Transmission of Pseudotyped Retroviral Vector in Chicken

  • Heo, Y.T.;Kim, T.;Lee, Y.M.;Lee, C.K.;Kwon, M.S.;Koo, B.C.;Roh, K.S.;Whang, K.;Han, D.W.;Chung, K.S.;Lee, H.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권1호
    • /
    • pp.27-32
    • /
    • 2004
  • Using MLV (murine leukemia virus)-based retrovirus vectors encapsidated with VSV-G (vesicular stomatitis virus G glycoprotein), we tried to make transgenic chickens carrying the transferred genes in their chromosomes. Twenty one days after virus injection beneath the blastoderms of unincubated chicken embryos (stage Ⅹ, at laying), DNA isolated from the hatched chicks were analyzed by PCR with two sets of primers specific for EGFP (enhanced green fluorescence protein) gene or $Neo^R$ (E. coli neomycin resistant) gene. Among sixty-seven embryos injected with retrovirus, four of them were identified to carry the EGFP genes in their genomes. Remarkably, one transgenic chick showed presence of the retrovirus vector sequences in all organs differentiated from one of endoderm, mesoderm, and ectoderm. Expression of EGFP gene was not detected, however, the stable germ line transmission of transgene was verified in spermatozoa from the founder chicken and 50% of $F_1$ progenies.

황갈색 재래닭의 간에서 성장 단계별 차등 발현 유전자 분석 (Identification of Differentially Expressed Genes in Four Different Growing Stages in Korea Native Chicken Liver)

  • 이경연;유성란;정기철;장병귀;최강덕;이준헌
    • 한국가금학회지
    • /
    • 제34권2호
    • /
    • pp.85-90
    • /
    • 2007
  • 한국 재래닭에서 성장에 따른 유전자들의 발현 변화를 알아보고 성장 촉진, 대사 및 면역 관련 유전자를 발굴하기 위하여 주령별로 닭의 간에서 RNA를 추출하였으며 10개의 arbitrary ACPs를 이용하여 차등 발현되는 유전자를 조사하였다. 발현량에 현저한 차이를 보이는 5개의 유전자들이 선별되었으며, 이 중 3개의 유전자들은 BLAST search 결과 이미 기능이 알려진 FTH1, SAA와 HSP90B1으로 밝혀졌다. 그러나 2개의 유전자들은 닭의 genome sequence가 끝났음에도 불구하고 기능이 밝혀져 있지 않아 앞으로 이 유전자들의 기능에 대한 연구가 지속되어야 함을 의미한다. 본 연구에서 닭의 간에서 성장 단계별로 발현 차이를 보이는 유전자들은 앞으로 다른 유전자와 단백질들과의 관계를 통하여 닭의 성장 및 지방 대사를 이해하는데 도움을 줄 것으로 사료된다.

Isolation and characterization of cultured chicken oviduct epithelial cells and in vitro validation of constructed ovalbumin promoter in these cells

  • Yang, Hyeon;Lee, Bo Ram;Lee, Hwi-Cheul;Jung, Sun Keun;Kim, Ji-Youn;No, Jingu;Shanmugam, Sureshkumar;Jo, Yong Jin;Lee, Haesun;Hwang, Seongsoo;Byun, Sung June
    • Animal Bioscience
    • /
    • 제34권8호
    • /
    • pp.1321-1330
    • /
    • 2021
  • Objective: Transgenic hens hold a great promise to produce various valuable proteins. Through virus transduction into stage X embryo, the transgene expression under the control of constructed chicken ovalbumin promoters has been successfully achieved. However, a validation system that can evaluate differently developed ovalbumin promoters in in vitro, remains to be developed. Methods: In the present study, chicken oviduct epithelial cells (cOECs) were isolated from oviduct tissue and shortly cultured with keratinocyte complete medium supplemented with chicken serum. The isolated cells were characterized with immunofluorescence, western blot, and flow cytometry using oviduct-specific marker. Chicken mutated ovalbumin promoter (Mut-4.4-kb-pOV) was validated in these cells using luciferase reporter analysis. Results: The isolated cOECs revealed that the oviduct-specific marker, ovalbumin protein, was clearly detected by immunofluorescence, western blot, and flow cytometry analysis revealed that approximately 79.40% of the cells contained this protein. Also, luciferase reporter analysis showed that the constructed Mut-4.4-kb-pOV exhibited 7.1-fold (p<0.001) higher activity in the cOECs. Conclusion: Collectively, these results demonstrate the efficient isolation and characterization of cOECs and validate the activity of the constructed ovalbumin promoter in the cultured cOECs. The in vitro validation of the recombinant promoter activity in cOECs can facilitate the production of efficient transgenic chickens for potential use as bioreactors.

닭 수정란에서 Retrovirus를 이용한 형질전환 닭 생산 연구 (A Study of the Retrovirus-Mediated Transgenic Chicken Production on Chicken Embryos)

  • 변승준;박철;김성우;박진기;장원경;양보석;김태윤;손시환;김상훈;전익수
    • 한국가금학회지
    • /
    • 제32권4호
    • /
    • pp.225-229
    • /
    • 2005
  • 현재 가장 활발하게 진행되고 있는 형질전환 자 생산 연구방법은 배반엽단계 수정란에 농축한 virus를 주입하여 모자이크 형태의 $G_0$ 형질 전환체를 생산하고 이들을 이용하여 $G_1$ 형질전환 후대를 생산하는 방법이 가장 보편적으로 이용되고 있다. 상기의 연구방법은 완전한 형질 전환체를 획득하기 위해서는 수천수의 $G_1$을 생산하고 각각 유전분석을 수행하는 문제점을 가지고 있다. 이러한 문제점을 개선하고자 다음의 연구를 계획하고 수행하였다. 20nL의 농축된 GFP retrovirus를 1세포기 수정란에 주입하고, 주입한 유전자의 발현율과 수정란의 생존율을 배양 4일차 수정란에서 GFP의 발현과 배자의 생존 여부로 판정하였다. 연구결과는 배양 4일차 수정란의 생존율은 기존의 naked DNA 미세주입방법에 비해 다소 낮은 것으로 나타났으나 유의성은 없었다. 1세포기 수정란은 배반엽 단계 수정란과 달리 주입한virus의 유전자를 발현하지 않는 것으로 관찰되었다. 연구결과는 배반엽단계 수정란에 virus 미세주입 방법이 형질전환 닭 생산에 가장 효율적인 방법임 보여주고 있다.

PRIMORDIAL GERM CELLS IN AVES - Review -

  • Han, J.Y.;Seo, D.S.;Shoffner, R.N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제7권4호
    • /
    • pp.459-466
    • /
    • 1994
  • Primordial germ cells (PGCs) in aves are the progenitor cells for the gametes. These cells first appear in the epiblast (Eyal-Giladi et al.. 1981). Then translocate and concentrate to endoderm of germinal crescent area in the junction of the area opaca and area pellucida lateral to the primitive streak in stage 4 through 7. They separate from the endoderm, temporarily circulate via the blood vascular system, leave the blood vessels, and finally settle down in the gonadal anlagen at stage 20-24 where they rapidly proliferate to form germ cells. Recently, several attempts have been made to introduce foreign gene into the avian genome to form a transgenic chicken. The stem cells most readily available as vehicles for genetic manipulation of germline in avian species are the PGCs. PGCs have recently been manipulated genetically and used successfully as a vector for gene transfer.

Current Strategies of Genomic Modification in Livestock and Applications in Poultry

  • Park, Tae Sub
    • 한국동물생명공학회지
    • /
    • 제34권2호
    • /
    • pp.65-69
    • /
    • 2019
  • Since the development of the first genetically-modified mouse, transgenic animals have been utilized for a wide range of industrial applications as well as basic research. To date, these transgenic animals have been used in functional genomics studies, disease models, and therapeutic protein production. Recent advances in genome modification techniques such zinc finger nuclease (ZFN), transcription activator-like effector nucleases (TALEN), and clustered regularly interspaced short palindromic repeats (CRIPSR)-Cas9, have led to rapid advancement in the generation of genome-tailored livestock, as well as experimental animals; however, the development of genome-edited poultry has shown considerably slower progress compared to that seen in mammals. Here, we will focus primarily on the technical strategies for production of transgenic and gene-edited chickens, and their potential for future applications.

Avian Somitic Cell Chimeras Using Surrogate Eggshell Technology

  • Mozdziak, Paul E.;Hodgson, Dee;Petitte, James N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권6호
    • /
    • pp.801-806
    • /
    • 2008
  • A classical technique to study somitic cell fate is to employ the cross-transplantation of quail somites into a chick host. The densely stained nucleoli of the quail cells makes it possible to assess the fate of the donor quail cells in the chick host. Classical somite transplantation techniques have been hampered by the necessity of a small opening in the chick eggshell, difficulty in hatching the offspring and interspecies post-hatch graft rejection. With the advent of transgenic chicken technology, it is now possible to use embryos from transgenic chickens expressing reporter genes in somite cross-transplantation techniques to remove any possibility of interspecies graft rejection. This report describes using a surrogate eggshell system in conjunction with transgenic chick:chick somitic cell cross-transplantation to generate viable chimeric embryos and offspring. Greater than 40% of manipulated embryos survive past 10 days of incubation, and ~80% of embryos successfully cultured past 10 days of incubation hatched to produce viable offspring.