DOI QR코드

DOI QR Code

Identification of Differentially Expressed Genes in Four Different Growing Stages in Korea Native Chicken Liver

황갈색 재래닭의 간에서 성장 단계별 차등 발현 유전자 분석

  • Lee, K.Y. (Division of Animal Science and Resources, Research Center for Transgenic Cloned Pigs, Chungnam National University) ;
  • Yu, S.L. (Division of Animal Science and Resources, Research Center for Transgenic Cloned Pigs, Chungnam National University) ;
  • Jung, K.C. (Division of Animal Science and Resources, Research Center for Transgenic Cloned Pigs, Chungnam National University) ;
  • Jang, B.K. (National Livestock Research Institute, R.D.A.) ;
  • Choi, K.D. (School of Biotechnology, Hankyong National University) ;
  • Lee, J.H. (Division of Animal Science and Resources, Research Center for Transgenic Cloned Pigs, Chungnam National University)
  • 이경연 (충남대학교 동물자원학부) ;
  • 유성란 (충남대학교 동물자원학부) ;
  • 정기철 (충남대학교 동물자원학부) ;
  • 장병귀 (농촌진흥청 축산연구소) ;
  • 최강덕 (한경대학교 생명공학부) ;
  • 이준헌 (충남대학교 동물자원학부)
  • Published : 2007.06.30

Abstract

The chicken liver has been involved in various biological functions including detoxification, glycogen storage and plasma protein synthesis. The aim of this study was to investigate differentially expressed genes in chicken liver in four different growing stages. Using 10 arbitrary Annealing Control Primers (ACPs), five differentially expressed genes have been identified. Based on the Basic Local Alignment Search Tool (BLAST) search results, three of them were matched with previously known genes, and the other two were matched with unknown EST sequence and a hypothetical protein, respectively. In order to confirm the expression results, quantitative real-time PCR was also performed. The high similarities between the expression data using arbitrary ACPs and quantitative real-time PCR indicate that the identified genes are the real differentially expressed genes in different growing stages. The genes identified in this study can be used as valuable biomarkers in chicken with further investigation of the functions.

한국 재래닭에서 성장에 따른 유전자들의 발현 변화를 알아보고 성장 촉진, 대사 및 면역 관련 유전자를 발굴하기 위하여 주령별로 닭의 간에서 RNA를 추출하였으며 10개의 arbitrary ACPs를 이용하여 차등 발현되는 유전자를 조사하였다. 발현량에 현저한 차이를 보이는 5개의 유전자들이 선별되었으며, 이 중 3개의 유전자들은 BLAST search 결과 이미 기능이 알려진 FTH1, SAA와 HSP90B1으로 밝혀졌다. 그러나 2개의 유전자들은 닭의 genome sequence가 끝났음에도 불구하고 기능이 밝혀져 있지 않아 앞으로 이 유전자들의 기능에 대한 연구가 지속되어야 함을 의미한다. 본 연구에서 닭의 간에서 성장 단계별로 발현 차이를 보이는 유전자들은 앞으로 다른 유전자와 단백질들과의 관계를 통하여 닭의 성장 및 지방 대사를 이해하는데 도움을 줄 것으로 사료된다.

Keywords

References

  1. Ahmed FE 2002 Molecular techniques for studying gene expression in carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 20(2):77-116 https://doi.org/10.1081/GNC-120016201
  2. Arnon S, Litmanovitz I, Regev RH, Bauer S, Shainkin-Kestenbaum R, Dolfin T 2007 Serum amyloid A: An early and accurate marker of neonatal early-onset sepsis. J Perinatol In press
  3. Choi DH, Cho HR, Ko BK, Nah YW, Nam CW, Kim GY, Im YC, Park KC, Kim DH, Park JH, Min YJ, Suh FH, Park JW 2002 Expression of a novel 90 kDa heat shock protein in colorectal tumor. J Korean Soc Coloproctol 18(1):1-6
  4. Coetzee GA, Strachan AF, van der Westhuyzen DR, Hoppe HC, Jeenah MS, de Beer FC 1986 Serum amyloid A-containing human high density lipoprotein 3. J Biol Chem 261(21): 9644-9651
  5. Cui XS, Shin MR, Lee KA, Kim NH 2005 Identification of differentially expressed genes in murine embryos at the blastocyst stage using annealing control primer system. Mol Reprod Dev 70(3):278-287 https://doi.org/10.1002/mrd.20210
  6. Godfroid E, Heinderyckx M, Mansy F, Fayt I, Noel JC, Thiry L, Bollen A 1998 Detection and identification of human papilloma viral DNA, types 16, 18, and 33, by a combination of polymerase chain reaction and a colorimetric solid phase capture hybridisation assay. J Virol Methods 75(1):69-81 https://doi.org/10.1016/S0166-0934(98)00101-3
  7. Hartson SD, Matts RL 1994 Association of Hsp90 with cellular Src-family kinases in a cell-free system correlates with altered kinase structure and function. Biochemistry 33(30):8912- 8920 https://doi.org/10.1021/bi00196a008
  8. Hillier LW, Miller W, Birney E, Warren W, Hardison RC, Ponting CP, Bork P, Burt DW, Groenen MA, Delany ME, et al 2004 Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695-716 https://doi.org/10.1038/nature03154
  9. Hwang KC, Cui XS, Park SP, Shin MR, Park SY, Kim EY, Kim NH 2004 Identification of differentially regulated genes in bovine blastocysts using an annealing control primer system. Mol Reprod Dev 69(1):43-51 https://doi.org/10.1002/mrd.20156
  10. Hwang KC, Lee HY, Cui XS, Kim JH, Kim NH 2005 Identification of maternal mRNAs in porcine parthenotes at the 2-cell stage: a comparison with the blastocyst stage. Mol Reprod Dev 70(3):314-323 https://doi.org/10.1002/mrd.20204
  11. Kim DK, Lim D, Lee BR, Shin JH, Kim H, Han JY 2005 Analysis of testis-specific transcripts in the chicken. Anim Genet 3:232-234
  12. Kim YJ, Kwak CI, Gu YY, Hwang IT, Chun JY 2004 Annealing control primer system for identification of differentially expressed genes on agarose gels. Biotechniques 36(3): 424-426 https://doi.org/10.2144/04363ST02
  13. Koyasu S, Nishida E, Kadowaki T, Matsuzaki F, Iida K, Harada F, Kasuga M, Sakai H, Yahara I 1986 Two mammalian heat shock proteins, HSP90 and HSP100, are actin-binding proteins. Proc Natl Acad Sci U S A 83(21):8054-8058
  14. Libby P, Ridker PM, Maseri A 2002 Inflammation and atherosclerosis. Circulation 105(9):1135-1143 https://doi.org/10.1161/hc0902.104353
  15. Lorincz AT 1996 Molecular methods for the detection of human papillomavirus infection. Obstet Gynecol Clin North Am 23 (3):707-730
  16. Ma Y, Bogatcheva NV, Gusev NB 2000 Heat shock protein (hsp90) interacts with smooth muscle calponin and affects calponin-binding to actin. Biochim Biophys Acta 1476(2): 300-310 https://doi.org/10.1016/S0167-4838(99)00250-2
  17. Munro H 1993 The ferritin genes: their response to iron status. Nutr Rev 51(3):65-73 https://doi.org/10.1111/j.1753-4887.1993.tb03072.x
  18. Pratt WB, Toft DO 1997 Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 18(3):306-360 https://doi.org/10.1210/er.18.3.306
  19. Rebuzzi AG, Quaranta G, Liuzzo G, Caligiuri G, Lanza GA, Gallimore JR, Grillo RL, Cianflone D, Biasucci LM, Maseri A 1998 Incremental prognostic value of serum levels of troponin T and C-reactive protein on admission in patients with unstable angina pectoris. Am J Cardiol 82:715–719
  20. Sang BD, Kong HS, Kim HK, Choi CH, Kin SD, Cho YM, Sang BC, Lee JH, Jeon GJ, Lee HK 2006 Estimation of genetic parameters for economic traits in Korean native chickens. Asian-australas J Anim Sci 19(3):319-323 https://doi.org/10.5713/ajas.2006.319
  21. Viguerie N, Poitou C, Cancello R, Stich V, Clement K, Langin D 2005 Transcriptomics applied to obesity and caloric restriction. Biochimie 87(1):117-23 https://doi.org/10.1016/j.biochi.2004.12.011
  22. Ye X, Avendano S, Dekkers JC, Lamont SJ 2006 Association of twelve immune-related genes with performance of three broiler lines in two different hygiene environments. Poult Sci 85(9):1555-1569 https://doi.org/10.1093/ps/85.9.1555
  23. Zhu LJ, Bagchi MK, Bagchi IC 1995 Ferritin heavy chain is a progesterone-inducible marker in the uterus during pregnancy. Endocrinology 136(9):4106-4115 https://doi.org/10.1210/en.136.9.4106
  24. 오봉국 강민수 김기경 김선중 김희발 손시환 손장호 양영훈 이득환 이준헌 이학교 장홍희 조병욱 최연호 한재용 2007 가금학. 문운당 pp. 35