• 제목/요약/키워드: Transforming growth factor-1

검색결과 452건 처리시간 0.031초

No Association of the TGF-β1 29T/C Polymorphism with Breast Cancer Risk in Caucasian and Asian Populations: Evidence from a Meta-Analysis Involving 55, 841 Subjects

  • Alqumber, Mohammed A.A.;Dar, Sajad Ahmad;Haque, Shafiul;Wahid, Mohd;Singh, Rohit;Akhter, Naseem
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권20호
    • /
    • pp.8725-8734
    • /
    • 2014
  • The transforming growth factor-${\beta}1$ (TGF-${\beta}1$) gene 29 T/C polymorphism is thought to be associated with breast cancer risk. However, reports are largely conflicting and underpowered. We therefore conducted a meta-analysis of all available case-control studies relating the TGF-${\beta}1$ 29T/C polymorphism to the risk of developing breast cancer by including a total of 31 articles involving 24,021 cases and 31,820 controls. Pooled ORs were generated for the allele contrasts, with additive genetic, dominant genetic and recessive genetic models. Subgroup analysis was also performed by ethnicity for the TGF-${\beta}1$ 29T/C polymorphism. No association was found in the overall analysis (C vs T: OR=1.028, 95% CI=0.949-1.114, p-value 0.500; CC vs TC: OR= 1.022, 95% CI=0.963-1.085, p-value 0.478; CC vs TT: OR= 1.054, 95% CI=0.898-1.236, p-value 0.522; CC vs TT+ TC: OR= 1.031, 95% CI=0.946-1.124, p-value 0.482; TT vs CC+TC: OR= 0.945, 95% CI=0.827-1.080, p-value 0.403). Similarly, in the subgroup analysis by ethnicity, no association was found in Caucasian (C vs T: OR= 1.041, 95% CI=0.932-1.162, p-value 0.475; CC vs TC: OR= 1.031, 95% CI=0.951-1.118, p-value 0.464; CC vs TT: OR= 1.081, 95% CI=0.865-1.351, p-value 0.493; CC vs TT+TC: OR= 1.047, 95% CI=0.929-1.180, p-value 0.453; TT vs CC+TC: OR= 0.929, 95% CI=0.775-1.114, p-value 0.429;) and Asian populations (C vs T: OR= 1.004, 95% CI=0.908-1.111, p-value 0.931; CC vs TC: OR= 0.991, 95% CI=0.896-1.097, p-value 0.865; CC vs TT: OR= 1.015, 95% CI=0.848-1.214, p-value 0.871; CC vs TT+TC: OR= 1.000, 95% CI=0.909-1.101, p-value 0.994; TT vs CC+TC: OR= 0.967, 95% CI=0.808-1.159, p-value 0.720;). No evidence of publication bias was detected during the analysis. No significant association with breast cancer risk was demonstrated overall or on subgroup (Caucasian and Asian) analysis. It can be concluded that TGF-${\beta}1$ 29T/C polymorphism does not play a role in breast cancer susceptibility in overall or ethnicity-specific manner.

The TGFβ→TAK1→LATS→YAP1 Pathway Regulates the Spatiotemporal Dynamics of YAP1

  • Min-Kyu Kim;Sang-Hyun Han;Tae-Geun Park;Soo-Hyun Song;Ja-Youl Lee;You-Soub Lee;Seo-Yeong Yoo;Xin-Zi Chi;Eung-Gook Kim;Ju-Won Jang;Dae Sik Lim;Andre J. van Wijnen;Jung-Won Lee;Suk-Chul Bae
    • Molecules and Cells
    • /
    • 제46권10호
    • /
    • pp.592-610
    • /
    • 2023
  • The Hippo kinase cascade functions as a central hub that relays input from the "outside world" of the cell and translates it into specific cellular responses by regulating the activity of Yes-associated protein 1 (YAP1). How Hippo translates input from the extracellular signals into specific intracellular responses remains unclear. Here, we show that transforming growth factor β (TGFβ)-activated TAK1 activates LATS1/2, which then phosphorylates YAP1. Phosphorylated YAP1 (p-YAP1) associates with RUNX3, but not with TEAD4, to form a TGFβ-stimulated restriction (R)-point-associated complex which activates target chromatin loci in the nucleus. Soon after, p-YAP1 is exported to the cytoplasm. Attenuation of TGFβ signaling results in re-localization of unphosphorylated YAP1 to the nucleus, where it forms a YAP1/TEAD4/SMAD3/AP1/p300 complex. The TGFβ-stimulated spatiotemporal dynamics of YAP1 are abrogated in many cancer cells. These results identify a new pathway that integrates TGFβ signals and the Hippo pathway (TGFβ→TAK1→LATS1/2→YAP1 cascade) with a novel dynamic nuclear role for p-YAP1.

Ginsenoside Rg1 Epigenetically Modulates Smad7 Expression in Liver Fibrosis via MicroRNA-152

  • Rongrong Zhang ;Xinmiao Li ;Yuxiang Gao ;Qiqi Tao;Zhichao Lang;Yating Zhan;Chunxue Li;Jianjian Zheng
    • Journal of Ginseng Research
    • /
    • 제47권4호
    • /
    • pp.534-542
    • /
    • 2023
  • Background: Ginsenoside Rg1, a bioactive component of Ginseng, has demonstrated anti-inflammatory, anti-cancer, and hepatoprotective effects. It is known that the epithelial-mesenchymal transition (EMT) plays a key role in the activation of hepatic stellate cells (HSCs). Recently, Rg1 has been shown to reverse liver fibrosis by suppressing EMT, although the mechanism of Rg1-mediated anti-fibrosis effects is still largely unclear. Interestingly, Smad7, a negative regulator of the transforming growth factor β (TGF-β) pathway, is often methylated during liver fibrosis. Whether Smad7 methylation plays a vital role in the effects of Rg1 on liver fibrosis remains unclear. Methods: Anti-fibrosis effects were examined after Rg1 processing in vivo and in vitro. Smad7 expression, Smad7 methylation, and microRNA-152 (miR-152) levels were also analyzed. Results: Rg1 significantly reduced the liver fibrosis caused by carbon tetrachloride, and reduced collagen deposition was also observed. Rg1 also contributed to the suppression of collagenation and HSC reproduction in vitro. Rg1 caused EMT inactivation, reducing Desmin and increasing E-cadherin levels. Notably, the effect of Rg1 on HSC activation was mediated by the TGF-β pathway. Rg1 induced Smad7 expression and demethylation. The over-expression of DNA methyltransferase 1 (DNMT1) blocked the Rg1-mediated inhibition of Smad7 methylation, and miR-152 targeted DNMT1. Further experiments suggested that Rg1 repressed Smad7 methylation via miR-152-mediated DNMT1 inhibition. MiR-152 inhibition reversed the Rg1-induced promotion of Smad7 expression and demethylation. In addition, miR-152 silencing led to the inhibition of the Rg1-induced EMT inactivation. Conclusion: Rg1 inhibits HSC activation by epigenetically modulating Smad7 expression and at least by partly inhibiting EMT.

A Novel Pyrazolo[3,4-d]pyrimidine Induces Heme Oxygenase-1 and Exerts Anti-Inflammatory and Neuroprotective Effects

  • Lee, Ji Ae;Kwon, Young-Won;Kim, Hye Ri;Shin, Nari;Son, Hyo Jin;Cheong, Chan Seong;Kim, Dong Jin;Hwang, Onyou
    • Molecules and Cells
    • /
    • 제45권3호
    • /
    • pp.134-147
    • /
    • 2022
  • The anti-oxidant enzyme heme oxygenase-1 (HO-1) is known to exert anti-inflammatory effects. From a library of pyrazolo[3,4-d]pyrimidines, we identified a novel compound KKC080096 that upregulated HO-1 at the mRNA and protein levels in microglial BV-2 cells. KKC080096 exhibited anti-inflammatory effects via suppressing nitric oxide, interleukin1β (IL-1β), and iNOS production in lipopolysaccharide (LPS)-challenged cells. It inhibited the phosphorylation of IKK and MAP kinases (p38, JNK, ERK), which trigger inflammatory signaling, and whose activities are inhibited by HO-1. Further, KKC080096 upregulated anti-inflammatory marker (Arg1, YM1, CD206, IL-10, transforming growth factor-β [TGF-β]) expression. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinetreated mice, KKC080096 lowered microglial activation, protected the nigral dopaminergic neurons, and nigral damage-associated motor deficits. Next, we elucidated the mechanisms by which KKC080096 upregulated HO-1. KKC080096 induced the phosphorylation of AMPK and its known upstream kinases LKB1 and CaMKKbeta, and pharmacological inhibition of AMPK activity reduced the effects of KKC080096 on HO-1 expression and LPS-induced NO generation, suggesting that KKC080096-induced HO-1 upregulation involves LKB1/AMPK and CaMKKbeta/AMPK pathway activation. Further, KKC080096 caused an increase in cellular Nrf2 level, bound to Keap1 (Nrf2 inhibitor protein) with high affinity, and blocked Keap1-Nrf2 interaction. This Nrf2 activation resulted in concurrent induction of HO-1 and other Nrf2-targeted antioxidant enzymes in BV-2 and in dopaminergic CATH.a cells. These results indicate that KKC080096 is a potential therapeutic for oxidative stress-and inflammation-related neurodegenerative disorders such as Parkinson's disease.

Aspirin-Triggered Resolvin D1 Inhibits TGF-β1-Induced EndMT through Increasing the Expression of Smad7 and Is Closely Related to Oxidative Stress

  • Shu, Yusheng;Liu, Yu;Li, Xinxin;Cao, Ling;Yuan, Xiaolong;Li, Wenhui;Cao, Qianqian
    • Biomolecules & Therapeutics
    • /
    • 제24권2호
    • /
    • pp.132-139
    • /
    • 2016
  • The endothelial-mesenchymal transition (EndMT) is known to be involved in the transformation of vascular endothelial cells to mesenchymal cells. EndMT has been confirmed that occur in various pathologic conditions. Transforming growth factor ${\beta}1$ (TGF-${\beta}1$) is a potent stimulator of the vascular endothelial to mesenchymal transition (EMT). Aspirin-triggered resolvin D1 (AT-RvD1) has been known to be involved in the resolution of inflammation, but whether it has effects on TGF-${\beta}1$-induced EndMT is not yet clear. Therefore, we investigated the effects of AT-RvD1 on the EndMT of human umbilical vein vascular endothelial cells line (HUVECs). Treatment with TGF-${\beta}1$ reduced the expression of Nrf2 and enhanced the level of F-actin, which is associated with paracellular permeability. The expression of endothelial marker VE-cadherin in HUVEC cells was reduced, and the expression of mesenchymal marker vimentin was enhanced. AT-RvD1 restored the expression of Nrf2 and vimentin and enhanced the expression of VE-cadherin. AT-RvD1 did also affect the migration of HUVEC cells. Inhibitory ${\kappa}B$ kinase 16 (IKK 16), which is known to inhibit the NF-${\kappa}B$ pathway, had an ability to increase the expression of Nrf2 and was associated with the inhibition effect of AT-RvD1 on TGF-${\beta}1$-induced EndMT, but it had no effect on TGF-${\beta}1$-induced EndMT alone. Smad7, which is a key regulator of TGF-${\beta}$/Smads signaling by negative feedback loops, was significantly increased with the treatment of AT-RvD1. These results suggest the possibility that AT-RvD1 suppresses the TGF-${\beta}1$-induced EndMT through increasing the expression of Smad7 and is closely related to oxidative stress.

Comparative analysis on genome-wide DNA methylation in longissimus dorsi muscle between Small Tailed Han and Dorper×Small Tailed Han crossbred sheep

  • Cao, Yang;Jin, Hai-Guo;Ma, Hui-Hai;Zhao, Zhi-Hui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권11호
    • /
    • pp.1529-1539
    • /
    • 2017
  • Objective: The objective of this study was to compare the DNA methylation profile in the longissimus dorsi muscle between Small Tailed Han and Dorper${\times}$Small Tailed Han crossbred sheep which were known to exhibit significant difference in meat-production. Methods: Six samples (three in each group) were subjected to the methylated DNA immunoprecipitation sequencing (MeDIP-seq) and subsequent bioinformatics analyses to detect differentially methylated regions (DMRs) between the two groups. Results: 23.08 Gb clean data from six samples were generated and 808 DMRs were identified in gene body or their neighboring up/downstream regions. Compared with Small Tailed Han sheep, we observed a tendency toward a global loss of DNA methylation in these DMRs in the crossbred group. Gene ontology enrichment analysis found several gene sets which were hypomethylated in gene-body region, including nucleoside binding, motor activity, phospholipid binding and cell junction. Numerous genes were found to be differentially methylated between the two groups with several genes significantly differentially methylated, including transforming growth factor beta 3 (TGFB3), acyl-CoA synthetase long chain family member 1 (ACSL1), ryanodine receptor 1 (RYR1), acyl-CoA oxidase 2 (ACOX2), peroxisome proliferator activated receptor-gamma2 (PPARG2), netrin 1 (NTN1), ras and rab interactor 2 (RIN2), microtubule associated protein RP/EB family member 1 (MAPRE1), ADAM metallopeptidase with thrombospondin type 1 motif 2 (ADAMTS2), myomesin 1 (MYOM1), zinc finger, DHHC type containing 13 (ZDHHC13), and SH3 and PX domains 2B (SH3PXD2B). The real-time quantitative polymerase chain reaction validation showed that the 12 genes are differentially expressed between the two groups. Conclusion: In the current study, a tendency to a global loss of DNA methylation in these DMRs in the crossbred group was found. Twelve genes, TGFB3, ACSL1, RYR1, ACOX2, PPARG2, NTN1, RIN2, MAPRE1, ADAMTS2, MYOM1, ZDHHC13, and SH3PXD2B, were found to be differentially methylated between the two groups by gene ontology enrichment analysis. There are differences in the expression of 12 genes, of which ACSL1, RIN2, and ADAMTS2 have a negative correlation with methylation levels and the data suggest that DNA methylation levels in DMRs of the 3 genes may have an influence on the expression. These results will serve as a valuable resource for DNA methylation investigations on screening candidate genes which might be related to meat production in sheep.

방사선 조사 후 발생한 흰쥐 심장손상에서 Captopril의 방어역할과 기전 (The Radioprotective Effect and Mechanism of Captopril on Radiation Induced-Heart Damage in Rats)

  • 장승희;이경자;구혜수
    • Radiation Oncology Journal
    • /
    • 제22권1호
    • /
    • pp.40-54
    • /
    • 2004
  • 목적 : 정상 흰쥐의 심장에 방사선을 조사한 군과 captopril과 방사선 조사를 병용한 군의 병리학적 소견과 $TNF-{\alpha}$ (tumor necrosis factor-alpha), $TGF-{\beta}1$ (transforming growth factor-beta), PDGF (platelet-derived growth factor), FGF (fibrobiast growth factor)-2의 발현상태를 비교 관찰함으로써 심장의 조기 방사선손상에서 captopril의 효과와 보호기전에서의 사이토카인의 역할을 알아보고자 하였다. 대상 및 방법 : 실험동물(Sprague-Dawley-Dawley 흰쥐)은 대조군, 방사선 조사 단독군, captopril과 방사선 조사 병용군으로 분류하였다. 방사선 조사 단독군은 12.5 Gy의 X-선을 좌흉곽에 단일 조사하였다. Captopril과 방사선 조사 병용군은 1일 50 mg/kg의 captopril을 방사선조사 1주 전부터 실험종료 시인 8주 후까지 식수에 섞어 음용시켰다. 실험 결과는 방사선조사 2주와 8주 후에 심방과 심실의 병리조직 소견을 비교 관찰하였고 면역조직화학염색으로 $TNF-{\alpha}$, $TGF-{\beta}$1, PDGF, FGG-2의 발현을 관찰하였다. 결과 : 방사선조사 2주 후 병리조직 소견상 대조군에 비해 심한 심방 심장막(pericardium) 섬유소 침착(p=0.093), 심실 혈관주위(perivascular space) 부종(p=0.082)과 혈관주위 및 사이질(interstitium)의 섬유소 침착(p=0.018)이 보였으며, 심방 심장막의 섬유소 침착은 심실에 비해 현저하였다(p=0.009). 방사선 조사 후 8주의 변화는 2주 소견에 비해서 부종 및 섬유소 침착은 소멸되었고, 섬유화가 관찰되었는데 이는 심실보다 심방의 심장막에서 현저하게 나타났다. Captopril과 방사선 병용군은 방사선에 의한 심장손상이 감소되어 병리학적 소견상 대조군과 비교 시 유의한 차이가 없었고, 방사선 조사 단독군과 비교하여 특히 2주 후에 심방의 심내막(endocardium) 섬유소 침착(p=0.047)과 심실의 사이질 섬유소 침착(p=0.019) 및 부종(p=0.042)이 현저히 감소되었다. 방사선조사 2주 후에 $TNF-{\alpha}$, $TGF-{\beta}$1, PDGF, FGF-2의 발현이 방사선 조사 단독군에서 대조군과 비교하여 증가되었으며, 특히 심방의 심장막 및 심장내막에서 현저하게 증가되었다. 방사선조사 8주 후에는 심장막의 $TNF-{\lapha}$, $TGF-{\beta}$1이 계속 증가되었으며 $TGF-{\beta}1$는 심방 심내막(p=0.015)과 사이질(p=0.025)에서 특히 증가되었으나, PDGF와 FGF-2는 감소되었다. Captopril과 방사선조사 병용군은 2주에 방사선 조사 단독군에 비하여 $TNF-{\alpha}$, $TGF-{\beta}$l, PDGF의 발현이 감소되었으며, 8주에는 심방과 심실의 심장막에서 $TNF-{\alpha}$가 현저히 감소되었고(p=0.049, p=0.009) $TGF-{\beta}1$, PDGF의 경우 감소되는 경향을 보였으나 유의한 차이는 없었다. 결론 : 흰쥐의 심장에 captopril을 방사선과 병용 투여하여 병리조직 소견을 관찰한 결과 방사선에 의한 조기 심장 손상이 감소됨을 확인할 수 있었다. 또한 방사선조사 후 2주 및 8주에 병용군에서 단독군에 비하여 $TNF-{\alpha}$, $TGF-{\beta}1$, PDGF 등의 발현이 감소하는 양상이 관찰되어, captopril이 사이토카인의 발현을 억제함으로써 방사선에 의한 심장손상을 감소시킬 수 있을 것으로 생각된다.

조절 T 세포 유래 TGF-β1에 의한 췌장섬세포의 기능 및 활성 증가 (Regulatory T Cells Promote Pancreatic Islet Function and Viability via TGF-β1 in vitro and in vivo)

  • 최봉금;김사현
    • 대한임상검사과학회지
    • /
    • 제50권3호
    • /
    • pp.304-312
    • /
    • 2018
  • 본 연구에서는 면역 억제 역할을 하는 것으로 알려져 있는 조절 T 세포 (regulatory T cell, Treg)의 새로운 생리학적 기능 대하여 확인해보고자 하였다. 시험관내나 동물실험에서 조절 T 세포가 분비하는 transforming growth factor ${\beta}1$ ($TGF-{\beta}1$)에 의하여 이식 직전까지 췌장섬세포의 생존률을 향상시키면서 동시에 혈당조절 기능이 향상될 수 있을 것이라는 가설이다. 이를 증명하기 위하여 마우스를 이용한 1형 당뇨병 모델을 제작한 뒤, 180 IEQ (islet equivalents)의 췌장섬세포를 동종간 이식하였다. 췌장섬세포는 이식 수술 시행 전까지 48시간 동안 $4{\times}10^6$의 Treg 세포와 함께 배양하여 Treg 유래 $TGF-{\beta}1$에 충분히 노출시킨 뒤 사용하였다. Treg 단독군, 췌장섬세포 단독군 및 Treg/islet 동시 배양군에서 각각 $TGF-{\beta}1$, IL-6 및 인슐린 분비 수준의 변화를 측정하였다. Treg/islet 동시 배양군에서 IL-6와 인슐린 분비는 증가하였고 (P<0.0005, P<0.005), 췌장섬세포 단독군과 비교하여 생존율이 향상되었다(P<0.005). 또한, 이식 후, 동시 배양된 췌장섬세포는 1형 당뇨병 마우스 모델에서 혈당 수치를 보다 효율적으로 조절하였다. 이러한 결과는 Treg 세포가 $TGF-{\beta}1$ 분비를 통하여 췌장섬세포의 기능과 생존력을 향상시킬 수 있음을 시사한다.

방사선조사가 MC3T3-E1 골모세포주의 TGF-${\beta}_1$ mRNA 발현과 석회화결절 형성에 미치는 영향 (Effects of irradiation on TGF-${\beta}_1$ mRNA expression and calcific nodule formation in MC3T3-E1 osteoblastic cell line)

  • 송주섭;김경아;고광준
    • Imaging Science in Dentistry
    • /
    • 제38권3호
    • /
    • pp.125-132
    • /
    • 2008
  • Purpose : To investigate the effects of irradiation on transforming growth factor ${\beta}_1$ (TGF-${\beta}_1$) mRNA expression and calcific nodule formation in MC3T3-E1 osteoblastic cell line. Materials and Methods : Cells were cultured in alpha-minimum essential medium ($\alpha$-MEM) supplemented with 10% fetal bovine serum and antibiotics. When the cells reached the level of 70-80% confluence, culture media were changed with $\alpha$-MEM supplemented with 10% FBS, 5 mM $\beta$-glycerol phosphate, and $50\;{\mu}g/mL$ ascorbic acid. Thereafter the cells were irradiated with a single dose of 2, 4, 6, 8 Gy at a dose rate of 1.5 Gy/min. The expression pattern of TGF-${\beta}_1$ mRNA, calcium content and calcific nodule formation were examined on day 3, 7, 14, 21, 28, respectively, after the irradiation. Results : The amount of TGF-${\beta}_1$ mRNA expression decreased significantly on day 7 after irradiation of 4, 6, 8 Gy. It also decreased on day 14 after irradiation of 6, 8 Gy. and decreased on day 21 after irradiation of 8 Gy. The amount of calcium deposition decreased significantly on day 7 after irradiation of 4, 8 Gy (P < 0.01) and showed a decreased tendency on day 14, 21 after irradiation of 4, 6, 8 Gy. The number of calcific nodules was decreased on day 7 after irradiation of 4, 8 Gy. Conclusion: Irradiation with a single dose of 4, 6, 8 Gy influences negatively the bone formation at the molecular level by affecting the TGF-${\beta}_1$ mRNA expression that was associated with proliferation and the production of extracellular matrix in MC3T3-E1 osteoblastic cell line.

  • PDF

풋사과 추출물의 피부 보습 효과 (Skin Moisturizing Activity of Unripe Apple(Immature Fruit of Malus pumila) in Mice)

  • 박혜림;김재광;이재경;최범락;김종대;구세광;제갈경환
    • 한방안이비인후피부과학회지
    • /
    • 제35권4호
    • /
    • pp.63-74
    • /
    • 2022
  • Objectives : Skin aging is generally characterized by wrinkles, sagging, loss of elasticity roughness, pigmentation and dryness. This changes is caused by reducing the elements constituting the extracellular matrix contributing to the physiological properties of the skin, such as collagen fiber, elastic fiber, and hyaluronic acid. Adequate skin hydration is important to maintain normal skin function and reduce skin aging. The present study is objective to observe skin moisturizing effects of Unripe apple(UA, Immature fruit of Malus pumila Mill) in vivo and its underlying molecular mechanisms. Methods : ICR mice were orally administerd UA(100, 200 and 400mg/kg/day) for 8 weeks, and skin water contents and the expression of transforming growth factor (TGF)-𝛽1, ceramide, hyaluronan and collagen type I(COL1) were measured in dorsal back skin of the mice. Gene expression of hyaluronan synthase(HAS1, HAS2, HAS3), collagen synthase(COL1A1, COL1A2) and TGF-𝛽1 were also determined by realtime RT-PCR. Results : Skin water contents and the expression of TGF-𝛽1, ceramide, COL1 and hyaluronan were significantly increased in UA group(100, 200 and 400mg/kg/day) compared to vehicle control. The mRNA expression of HAS isoform(HAS1, HAS2, HAS3), COL1A1, COL1A2, and TGF-𝛽1 were also significantly increased by UA. Conclusions : UA has skin moisturizing effects and enhancement activities in skin function related components(COL1, hyaluronan, ceramide and TGF-𝛽1). These results suggested that UA can be a developing candidate for developing alternative skin protective agent or functional food ingredient.