The Radioprotective Effect and Mechanism of Captopril on Radiation Induced-Heart Damage in Rats

방사선 조사 후 발생한 흰쥐 심장손상에서 Captopril의 방어역할과 기전

  • Chang Seung-Hee (Department of Radiation Oncology, Ewha Womans University) ;
  • Lee Kyung-Ja (Department of Radiation Oncology, Ewha Womans University) ;
  • Koo Heasoo (Department of Anatomic Pathology, Ewha Womans University)
  • 장승희 (이화여자대학교 의과대학 방사선종양학과교실) ;
  • 이경자 (이화여자대학교 의과대학 방사선종양학과교실) ;
  • 구혜수 (이화여자대학교 의과대학 해부병리과학교실)
  • Published : 2004.03.01

Abstract

Purpose : Captopril (angiotension converting enzyme inhibitor) is known to have a radioproptective effect in the lungs, intestines and skin, but its effect in the heart is unclear. To investigate the radioprotectlve efiect and mechanism of captopril on the heart, the histopathological changes and immunohistochemical stains were compared with radiation alone, and radiation combined with captopril, in the rats. Materials and Methods : The histopathological changes and immunohistochemical stains ($TNF{\alpha}$, $TGF{\beta}1$, PDGF and FGF2) were examined in the radiation alone and the combined captopril and radiation groups, 2 and 8 weeks after irradiation. Each group consisted of 8 to 10 rats (Sprague-Dawley). Irradiation (12.5 Gy) was given to the left hemithorax in a single fraction. Captopril (50 mg/Kg/d) mixed with water, was given orally and continuously from the first week prior to, up to the 8th week of the experiment. Results : In the radiation alone group, the ventricle at 2 weeks after irradiation showed prominent edema (p=0.082) and fibrin deposit (p=0.018) compared to the control group. At 8 weeks, the edema was decreased and fibrosis increased compared to those at 2 weeks. The histopathological changes of the combined group were similar to those of the control group, due to the reduced radiation toxicity at 2 and 8 weeks. The endocardial fibrin deposit (p=0.047) in the atrium, and the interstitial fibrin deposit (p=0.019) and edema (p=0.042) of the ventricle were reduced significantly in the combined group compared to those in the radiation alone group at 2 weeks. The expressions of $TNF-{\alpha}$, $TGF-{\beta}1$, PDGF and FGF-2 in the radiation alone group were more increased than in the control group, especially in the pericardium and endocardium of the atrium at 2 weeks. At 8 weeks, the pericardial $TNF-{\alpha}$ and $TGF-{\beta}1$ in the radiation alone group continuously increased. The expressions of $TNF-{\alpha}$, $TGF-{\beta}1$ and PDGF were decreased in the combined group at 2 weeks. At 8 weeks, the expressions of $TNF-{\alpha}$ in the atrial and ventricular pericardia were markedly reduced (p=0.049, p=0.009). Conclusion : This study revealed that the early heart damage induced by radiation can be reduced by the addition of captopril in a rat model. The expressions of $TNF-{\alpha}$, $TGF-{\beta}1$ and PDGF were further decreased in the combined compared to the radiation alone group at both 2 and 8 weeks. From these results, it may be concluded that these cytokines probably play roles in the radioprotective mechanism of captopril from the radiation-induced heart toxicity, similarly to in other organs.

목적 : 정상 흰쥐의 심장에 방사선을 조사한 군과 captopril과 방사선 조사를 병용한 군의 병리학적 소견과 $TNF-{\alpha}$ (tumor necrosis factor-alpha), $TGF-{\beta}1$ (transforming growth factor-beta), PDGF (platelet-derived growth factor), FGF (fibrobiast growth factor)-2의 발현상태를 비교 관찰함으로써 심장의 조기 방사선손상에서 captopril의 효과와 보호기전에서의 사이토카인의 역할을 알아보고자 하였다. 대상 및 방법 : 실험동물(Sprague-Dawley-Dawley 흰쥐)은 대조군, 방사선 조사 단독군, captopril과 방사선 조사 병용군으로 분류하였다. 방사선 조사 단독군은 12.5 Gy의 X-선을 좌흉곽에 단일 조사하였다. Captopril과 방사선 조사 병용군은 1일 50 mg/kg의 captopril을 방사선조사 1주 전부터 실험종료 시인 8주 후까지 식수에 섞어 음용시켰다. 실험 결과는 방사선조사 2주와 8주 후에 심방과 심실의 병리조직 소견을 비교 관찰하였고 면역조직화학염색으로 $TNF-{\alpha}$, $TGF-{\beta}$1, PDGF, FGG-2의 발현을 관찰하였다. 결과 : 방사선조사 2주 후 병리조직 소견상 대조군에 비해 심한 심방 심장막(pericardium) 섬유소 침착(p=0.093), 심실 혈관주위(perivascular space) 부종(p=0.082)과 혈관주위 및 사이질(interstitium)의 섬유소 침착(p=0.018)이 보였으며, 심방 심장막의 섬유소 침착은 심실에 비해 현저하였다(p=0.009). 방사선 조사 후 8주의 변화는 2주 소견에 비해서 부종 및 섬유소 침착은 소멸되었고, 섬유화가 관찰되었는데 이는 심실보다 심방의 심장막에서 현저하게 나타났다. Captopril과 방사선 병용군은 방사선에 의한 심장손상이 감소되어 병리학적 소견상 대조군과 비교 시 유의한 차이가 없었고, 방사선 조사 단독군과 비교하여 특히 2주 후에 심방의 심내막(endocardium) 섬유소 침착(p=0.047)과 심실의 사이질 섬유소 침착(p=0.019) 및 부종(p=0.042)이 현저히 감소되었다. 방사선조사 2주 후에 $TNF-{\alpha}$, $TGF-{\beta}$1, PDGF, FGF-2의 발현이 방사선 조사 단독군에서 대조군과 비교하여 증가되었으며, 특히 심방의 심장막 및 심장내막에서 현저하게 증가되었다. 방사선조사 8주 후에는 심장막의 $TNF-{\lapha}$, $TGF-{\beta}$1이 계속 증가되었으며 $TGF-{\beta}1$는 심방 심내막(p=0.015)과 사이질(p=0.025)에서 특히 증가되었으나, PDGF와 FGF-2는 감소되었다. Captopril과 방사선조사 병용군은 2주에 방사선 조사 단독군에 비하여 $TNF-{\alpha}$, $TGF-{\beta}$l, PDGF의 발현이 감소되었으며, 8주에는 심방과 심실의 심장막에서 $TNF-{\alpha}$가 현저히 감소되었고(p=0.049, p=0.009) $TGF-{\beta}1$, PDGF의 경우 감소되는 경향을 보였으나 유의한 차이는 없었다. 결론 : 흰쥐의 심장에 captopril을 방사선과 병용 투여하여 병리조직 소견을 관찰한 결과 방사선에 의한 조기 심장 손상이 감소됨을 확인할 수 있었다. 또한 방사선조사 후 2주 및 8주에 병용군에서 단독군에 비하여 $TNF-{\alpha}$, $TGF-{\beta}1$, PDGF 등의 발현이 감소하는 양상이 관찰되어, captopril이 사이토카인의 발현을 억제함으로써 방사선에 의한 심장손상을 감소시킬 수 있을 것으로 생각된다.

Keywords

References

  1. Stewart JR, Fajardo LF. Radiation-induced heart disease; an update. Prog Cardiovasc Dis 1984;27:173-194 https://doi.org/10.1016/0033-0620(84)90003-3
  2. Morgan GW, Freeman AP. McLean RG. Jarvie BH. Giles RW. Late cardiac, thyroid and pulmonary sequelae of mantle radiotherapy for Hodgkin's disease. Int J Radiat Oncol Biol Phys 1985;11:1925-1931
  3. Gustavsson A, Eskilsson Y, Landbergm T et al. Late effects after mantle radiotherapy in patients with Hodgkin's disease. Ann Oncol 1990;1:355-363 https://doi.org/10.1093/oxfordjournals.annonc.a057774
  4. Gyenes G, Rutovist L, Liedberg A, Fornander T. Long-term cardiac morbidity and mortality in a randomized trial of pre-and postoperative radiation therapy versus surgery alone in primary breast cancer. Radiother Oncol 1998;48(2):185-190 https://doi.org/10.1016/S0167-8140(98)00062-0
  5. Stewart JR, Cohn KE, Fajardo LF, Hancock EW, Kaplan HS. Radiation-induced heart disease. A study of 25 patients. Radiology 1967;89:302-310 https://doi.org/10.1148/89.2.302
  6. Khan MY. Radiation induced cardiomyopathy. 1. An electron microscopic study of cardiac muscle cells. Am J Pathol 1973;73:131-146
  7. Maeda S. Pathology of experimental radiation pancarditis. I. Observation on radiation-induced heart injuries following a single dose of X-ray irradiation to rabbit heart with special reference to its pathogenesis. Acta Pathol Jpn 1980;30:59-78
  8. Stewart JR, Fajardo LF, Gilette SM, Constine LS. Radi-ation injury to the heart. Int J Radiat Oncol Bioi Phys 1995;31(5):1205-1211 https://doi.org/10.1016/0360-3016(94)00656-6
  9. Archambeau J, Ines A, Fajardo LF. Response of swine skin microvasculature to acute single exposures of x-rays: Quantification of endothelial changes. Radiat Res 1984;98:37-51 https://doi.org/10.2307/3576049
  10. Fajardo LF, Stewart JR. Pathogenesis of radiation in-duced myocardial fibrosis. Lab Invest 1973;29:244-257
  11. Fajardo LF. The unique physiology of endothelial cells and its implications in radiobiology. Front Radiat Ther Oncol 1989;23:96-112
  12. Lauk S. Endothelial alkaline phosphatase activity loss as an early stage in the development of radiation induced heart disease in rats. Radiat Res 1987;110:118-128 https://doi.org/10.2307/3576889
  13. Martin M, Remy J, Daburon T. In vitro growth potential of fibroblast isolated from pigs with radiation-induced fibro-sis. Int J Radiat Bioi 1986;49:821-828
  14. Zhou M, Dong Q, Ts 'ao CH. Susceptibility of irradiated bo-vine aortic endothelial cells to injury. Am J Pathol 1988; 133:277-284
  15. Ward WF, Molteni A, Ts 'ao CH, Hinz JM. Captopril re-duces collagen and mast cell accumulation in irradiated rat lung. Int J Radiat Oncol Bioi Phys 1990B;19:1405-1409 https://doi.org/10.1016/0360-3016(90)90351-J
  16. Lehnert BE, Bethloff LA, Finkelstein IN, van der Kogel J. Temporal sequence of early alterations in rat lung follow-ing thoracic X-irradiation. Int J Radiat Bioi 1991;59:657-677
  17. Weber KT. Cardiac interstitium in health and disease. J Am Col Cardio 1989;13:1637-1652 https://doi.org/10.1016/0735-1097(89)90360-4
  18. Yarom R, Harper IS, Wynchank S, et al. Effect of capto-pril on changes in rats' hearts induced by long-term irradi-ation. Radiat Res 1993;133:187-197 https://doi.org/10.2307/3578356
  19. Chow LH, Yee SP, Pawson T, McManus B. Progressive cardiac fibrosis and myocyte injury in v-fps transgenic mice. Lab Invest 1991;64:457-462
  20. Kruse JJCM, Zurcher C, Stootman EB, et al. Structural changes in the auricles of the rat heart after local ionizing irradiation. Radiother Oncol 2001;58(3):303-311 https://doi.org/10.1016/S0167-8140(00)00327-3
  21. Lauk S, Kishel T, Buschmann J, Trott KR. Radiation induced heart disease in rats. Int J Radiat Oncol Bioi Phys 1985;11:801-808 https://doi.org/10.1016/0360-3016(85)90314-1
  22. Cilliers GD, Lochner A. Radiation-induced damage of the Wistar rat heart: biochemistry and function. Radiother Oncol 1993;27:216-222 https://doi.org/10.1016/0167-8140(93)90077-L
  23. Yeung TK, Hopewell JW. Effects of single doses of radi-ation on cardiac function in the rat. Radiother Oncol 1985;3:339-345 https://doi.org/10.1016/S0167-8140(85)80047-5
  24. Lauk S, Trott KR. Endothelial cell proliferation in the rat heart following local heart irradiation. Int J Radiat Bioi 1990;57(5):1017-1030 https://doi.org/10.1080/09553009014551131
  25. Rubin p, Finkelstein J, Schapiro D. Molecular biology mechanisms in the radiation induction of pulmonary injury syndromes: Interrelationship between the alveolar macro-phage and the septal fibroblast. Int J Radiat Oncol Bioi Phys 1992;24:93-101
  26. Rodemann HP, Bamberg M. Cellular basis of radiation-induced fibrosis Radiother Oncol 1995;35:83-90
  27. Burger A, Loffler H, Bamberg M, Rodemann HP. Mo-lecular and cellular basis of radiation fibrosis. Int J Radiat Bioi 1998;73(4):401-408 https://doi.org/10.1080/095530098142239
  28. Remy J, Wegrowski J, Crechet F, Martin M, Daburon F. Long-term overproduction of collagen in radiation-induced fibrosis. Radiat Res 1991;125:14-19 https://doi.org/10.2307/3577976
  29. Bentzen SM, Thames H D, Overgaard M. Latent-time estimation for late cutaneous and subcutaneous radiation reactions in a single-follow-up clinical study. Radiother Oncol 1989;15:267-274 https://doi.org/10.1016/0167-8140(89)90095-9
  30. Geraci JP, Mariano MS. Radiation hepatology of the rat: Parenchymal and nonparenchymal cell injury. Radiat Res 1993;136:205-213 https://doi.org/10.2307/3578612
  31. Benzakour O, Merzak A, Dooghe J, Pironin M, Lawrence D, Vigier FPH. Transforming growth factor beta stimulates mitogenically mouse NIH 3T3 fibroblasts and those cells transformed by the EJ-H-ras oncogene. Growth Factors 1992;6:265-275 https://doi.org/10.3109/08977199209021539
  32. Gauldie J, Jordana M, Cox G. Cytokines and pulmonary fibrosis. Thorax 1993;48:931-935 https://doi.org/10.1136/thx.48.9.931
  33. Martin M, Lefaix JL, Pinton PH, Crechet F, Daburon F. Temporal modulation of TGF-$\beta$1 and $\beta$-actin gene expression in pig skin and muscular fibrosis after ionizing radiation. Radiat Res 1993;134:63-70 https://doi.org/10.2307/3578502
  34. Martin M, Lefaix JL, Delanian S. TGF-$\beta$1 and radiation fibrosis: A master switch and a specific therapeutic target? Int J Radiat Oncol Bioi Phys 2000;47(2):277-290 https://doi.org/10.1016/S0360-3016(00)00435-1
  35. Moulin V. Growth factors in skin wound healing. Eur J Cell Bioi 1995;68:1-7 https://doi.org/10.1016/S0006-3495(95)80233-X
  36. Rubin P, Johnstone CJ, Williams JP, McDonald S, Finkelstein TN. A perpetual cascade of cytokines post-irradiation leads to pulmonary fibrosis. Int J Radiat Oncol Bioi Phys 1995;33:99-109 https://doi.org/10.1016/0360-3016(95)00095-G
  37. Johnstone SJ, Piedboeuf B, Rubin P, Williams JP, Baggs R, Finkelstein IN. Early and persistent alteration in the expression of interleukin-1, interleukin-1 and TNF mRNA levels in fibrosis-resistant and fibrosis-sensitive mice after thoracic irradiation. Radiat Res 1996;145:762-767 https://doi.org/10.2307/3579368
  38. McMarray J, Abdulah I, Dargie HJ, Shapiro D. In-creased concentrations of tumor necrosis factor in cachetic patients with severe chronic heart failure. Br Heart J 1991;66:356-358 https://doi.org/10.1136/hrt.66.5.356
  39. Mann DL, Young JB. Basic mechanisms in congesitive heart failure recognizing the role of proinflammatory cyto-kine. Chest 1994;105:891-904 https://doi.org/10.1378/chest.105.3.891
  40. Kelly RA, Smith TW. Cytokines and cardiac contractile function. Circulation 1997;95:778-781 https://doi.org/10.1161/01.CIR.95.4.778
  41. Iwamoto KS, McBride WH. Production of 13-hydroxy-octadecadienoic acid and tumor necrosis factor-$\alpha$ by mu-rine peritoneal macrophages in response to irradiation. Radiat Res 1994; 139: 103-108 https://doi.org/10.2307/3578739
  42. Rodemann HP, Binder A, Burger A, Guven N, Loffler H, Bamberg M. The underlying cellular mechanism of fibrosis. Kidney Int 1996;Suppl 54:S32-36
  43. Varga J, Rosenbloem J, Jimenez SA. Transforming growth factor $\beta$ (TGF-$\beta$) caused a persistent increase in steady state amounts of type I and type III collagen and fibronectin mRNAs in normal human fibroblasts. Biochem J 1987;247:597-604 https://doi.org/10.1042/bj2470597
  44. Shi DL, Savona C, Cagnon J, Cachet C, Chambaz EM, Feige JJ. Transforming growth factor $\beta$ stimulates the expression of $\alpha$-2-macroglobulin by cultured bovine adre- nocortical cells. J Bioi Chem 1990;265:2881-2887
  45. Lafuma C, Nabout RE, Crechet F, Hovanian A, Martin M. Expression of 72-kDa gelatinase, collagenase and tissue metalloproteinase inhibitor (TIMP) in primary pig skin fibro-blast cultures derived from radiation-induced skin fibrosis. J Invest Derma 1994;102:945-950 https://doi.org/10.1111/1523-1747.ep12384118
  46. Anscher MS, Kong FM, Marks LB, Bentel GC, Jirtle RL. Changes in plasma transforming growth factor beta during radiotherapy and the risk of symptomatic radiation-induced pneumonitis. Int J Radiat Oncol Bioi Phys 1997;37:253-258 https://doi.org/10.1016/S0360-3016(96)00529-9
  47. Thompson NL, Bazzoberry F, Speir EH, et al. Trans-forming Growth Factor beta-1 in acute myocardial infraction in rats. Growth Factors 1988;1:91-99 https://doi.org/10.3109/08977198809000251
  48. Takahashi N, Calderone A, Izzo N, Maki TM, Marsh JD, Colucci WS. Hypertrophic stimuli induce transforming growth factor-beta 1 expression in rat ventricular myocytes. J Clin Invest 1994;94(4):1470-1476 https://doi.org/10.1172/JCI117485
  49. Border WA, Noble NA. Transforming growth factor-beta in tissue fibrosis. N Engl J Med 1994;331(19):1286-1292 https://doi.org/10.1056/NEJM199411103311907
  50. Molteni A, Moulder JE, Cohen EF, et al. Control of radiation-induced and lung fibrosis by angiotensin-con-verting enzyme inhibitors and angiotensin II type 1 receptor blocker. Int J Radiat Bioi 2000;76(4):523-532 https://doi.org/10.1080/095530000138538
  51. Ward WF, Kim YT, Molteni A, Solliday NH. Radiation-induced pulmonary endothelial dysfunction in rats: modifi-cation by an inhibitor of angiotensin converting enzyme. Int J Radiat Oncol Bioi Phys 1988;15:135-140 https://doi.org/10.1016/0360-3016(88)90357-4
  52. Ward WF, Molteni A, Kim YT, Ts 'ao CH. Structure-function analysis of angiotensin-converting enzyme inhibi-tors as modifiers of radiation-induced pulmonary endothelial dysfunction in rats. Br J Radiol 1989;62:348-354 https://doi.org/10.1259/0007-1285-62-736-348
  53. Song MH, Lee KJ, Koo H, Oh WY. The radioprotective effect and mechanism of captopril on radiation induced lung damage in rat. J Kor Ther Radio Oncol 2001;19(2):190-198
  54. Ward WF, Molteni A, Ts'ao CH, Hinz JM. The effect of captopril on benign and malignant reactions in irradiated rat skin. Br J Radiol 1990;63:349-354 https://doi.org/10.1259/0007-1285-63-749-349
  55. Yoon SC, Park JM, Jang HS. Radioprotective effect of captopril on the mouse jejunal mucosa. Int J Radiat Oncol Bioi Phys 1994;30:873-878 https://doi.org/10.1016/0360-3016(94)90363-8
  56. Cohen EP, Molteni A, Hill P. Captopril preserves function and ultrastructure in experimental radiation nephropathy. Lab Invest 1996;75:349-367
  57. Moulder J, Fish B, Cohen E. Radiation nephropathy is treatable with an angiotensin converting enzyme inhibitor or an angiotensin II type 1 (A T1) receptor antagonist. Radiother Oncol 1998;46:307-315 https://doi.org/10.1016/S0167-8140(97)00175-8
  58. Wang LW, Fu X, Clough R, et al. Can angiotensin-converting enzyme inhibitors protect against symptomatic radiation pneumonitis? Radiat Res 2000; 153:405-410
  59. Dimmerler S, Rippmann V, Weiland U, Haendeler J, Zeiher AM. Angiotensin II induces apoptosis of human endothelial cells: Protective effect of nitric oxide. Cir Res 1997;81:970-976 https://doi.org/10.1161/01.RES.81.6.970
  60. Kagami S, Border W, Miller D, Noble N. Angiotensin II stimulates extracellular matrix protein synthesis through induction of transforming growth factor-$\beta$ expression in rat glomerular mesangial cells. J Clin Invest 1992;90:1-7 https://doi.org/10.1172/JCI115821
  61. Datta p, Moulder J, Fish B, Cohen E, Lianos E. TGF-$\beta$ 1 production in radiation nephropathy: Role of angiotensin II. Int J Radiat Bioi 1999;75:473-479 https://doi.org/10.1080/095530099140401
  62. Noble NA, Border W. Angiotensin II in renal fibrosis: Should TGF-$\beta$ rather than blood pressure be the target? Semin Nephrol 1997;17:455-466
  63. Ali S, Laping N, Fredrickson T, et al. Angiotensin-con-verting enzyme inhibition attenuates proteinuria and renal TGF-$\beta$1 mRNA expression in rats with chronic renal dis-ease. Pharmacology 1998;57:20-27 https://doi.org/10.1159/000028222
  64. Zoja C, Abate M, Coma D, et al. Pharmacologic control of angiotensin II ameliorates renal disease while reducing renal TGF-$\beta$ in experimental mesangioproliferative glomer-ulonephritis. Am J Kidney Dis 1998;31:453-463 https://doi.org/10.1053/ajkd.1998.v31.pm9506682
  65. Volpert OV, Ward WF, Lingen M, et al. Captopril is an inhibitor of angiogenesis that is able to slow growth of experimental tumors in rats. J Clin Invest 1996;98:671-679 https://doi.org/10.1172/JCI118838
  66. Uhal BD, Gldea C, Bargout R, et al. Captopril inhibits apoptosis in human lung epithelial cells: a potential antifi-brotic mechanism. Am J Physiol 1998;275:1013-1017
  67. Zierhut W, Zimmer HG, Gerdes AM. Effect of angiotensin converting enzyme inhibition of pressure-induced left ventri-cular hypertrophy in rats. Circ Res 1991;69:609-617 https://doi.org/10.1161/01.RES.69.3.609
  68. Zhao SP, Xie XM. Captopril inhibits the production of tumor necrosis factor-$\alpha$ by human mononuclear cells in patients with congestive heart failure. Clinica Chemica Acta 2001;304:85-90 https://doi.org/10.1016/S0009-8981(00)00405-8
  69. Schindler R, Dinarello CA, Koch KM. Angiotensin-con-verting-enzyme inhibitors suppress synthesis of tumor necrosis factor and interleukin 1 by human peripheral blood cells. Cytokine 1995;7:526
  70. Hsu SM, Raine L. Protein A, avidin, and biotin in immunihistochemistry. J Histochem Cytochem 1981;29(11):1349-1353 https://doi.org/10.1177/29.11.6172466
  71. Kruse JJCM, Bart CI, Visser A, Wondergem J. Changes in transforming growth factor-$\beta$ (TGF-$\beta$1), procollagen types I and III mRNA in the rat heart after irradiation. Int J Radiat Bioi 1999;75(11):1429-1436 https://doi.org/10.1080/095530099139296
  72. Ward WF, Molteni A, Ts'ao CH, Kim YT, Hinz JM. Radiation pneumotoxicity in rats: modification by inhibitor of angiotensin converting enzyme. Int J Radiat Oncol Bioi Phys 1992;22:623-625 https://doi.org/10.1016/0360-3016(92)90890-T
  73. Nguyen L, Ward WF, Ts'ao CH, Molteni A. Captopril inhibits proliferation of human lung fibroblast in culture: a potential antifibrotic mechanism. Proc Soc Exp Bioi Med 1994;205(1):80-84 https://doi.org/10.3181/00379727-205-43681
  74. Gosset p, Wallaert B, Tonnel AB, Fourneau C. Thiol regulation of the production of TNF-$\alpha$, IL-6 and IL-8 by human alveolar macrophages. Eur Respir J 1999;14:98-105 https://doi.org/10.1034/j.1399-3003.1999.14a17.x
  75. Tamba M, Torreggiani A. Free radical scavenging and copper chelation: A potentially beneficial action of captopril. Free Rad Res 2000;32(3):199-211 https://doi.org/10.1080/10715760000300211