DOI QR코드

DOI QR Code

Ginsenoside Rg1 Epigenetically Modulates Smad7 Expression in Liver Fibrosis via MicroRNA-152

  • Rongrong Zhang (Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University) ;
  • Xinmiao Li (Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University) ;
  • Yuxiang Gao (Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University) ;
  • Qiqi Tao (Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University) ;
  • Zhichao Lang (Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University) ;
  • Yating Zhan (Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University) ;
  • Chunxue Li (Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University) ;
  • Jianjian Zheng (Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University)
  • Received : 2021.06.30
  • Accepted : 2022.12.20
  • Published : 2023.07.01

Abstract

Background: Ginsenoside Rg1, a bioactive component of Ginseng, has demonstrated anti-inflammatory, anti-cancer, and hepatoprotective effects. It is known that the epithelial-mesenchymal transition (EMT) plays a key role in the activation of hepatic stellate cells (HSCs). Recently, Rg1 has been shown to reverse liver fibrosis by suppressing EMT, although the mechanism of Rg1-mediated anti-fibrosis effects is still largely unclear. Interestingly, Smad7, a negative regulator of the transforming growth factor β (TGF-β) pathway, is often methylated during liver fibrosis. Whether Smad7 methylation plays a vital role in the effects of Rg1 on liver fibrosis remains unclear. Methods: Anti-fibrosis effects were examined after Rg1 processing in vivo and in vitro. Smad7 expression, Smad7 methylation, and microRNA-152 (miR-152) levels were also analyzed. Results: Rg1 significantly reduced the liver fibrosis caused by carbon tetrachloride, and reduced collagen deposition was also observed. Rg1 also contributed to the suppression of collagenation and HSC reproduction in vitro. Rg1 caused EMT inactivation, reducing Desmin and increasing E-cadherin levels. Notably, the effect of Rg1 on HSC activation was mediated by the TGF-β pathway. Rg1 induced Smad7 expression and demethylation. The over-expression of DNA methyltransferase 1 (DNMT1) blocked the Rg1-mediated inhibition of Smad7 methylation, and miR-152 targeted DNMT1. Further experiments suggested that Rg1 repressed Smad7 methylation via miR-152-mediated DNMT1 inhibition. MiR-152 inhibition reversed the Rg1-induced promotion of Smad7 expression and demethylation. In addition, miR-152 silencing led to the inhibition of the Rg1-induced EMT inactivation. Conclusion: Rg1 inhibits HSC activation by epigenetically modulating Smad7 expression and at least by partly inhibiting EMT.

Keywords

Acknowledgement

The project was supported by the National Natural Science Foundation of China (No. 81873576), Wenzhou Municipal Science and technology Bureau (No. Y20220023) and the project of Wenzhou Medical University Basic Scientific Research (No. KYYW201904).

References

  1. Parola M, Pinzani M. Liver fibrosis: pathophysiology, pathogenetic targets and clinical issues. Mol Aspects Med 2019;65:37-55.  https://doi.org/10.1016/j.mam.2018.09.002
  2. Mittermeier C, Konopa A, Muehlich S. Molecular mechanisms to target cellular senescence in hepatocellular carcinoma. Cells 2020;9(12). 
  3. Higashi T, Friedman SL, Hoshida Y. Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev 2017;121:27-42.  https://doi.org/10.1016/j.addr.2017.05.007
  4. Hirata H, Hinoda Y, Ueno K, Shahryari V, Tabatabai ZL, Dahiya R. MicroRNA-1826 targets VEGFC, beta-catenin (CTNNB1) and MEK1 (MAP2K1) in human bladder cancer. Carcinogenesis 2012;33(1):41-8.  https://doi.org/10.1093/carcin/bgr239
  5. Liang Z, Xu J, Ma Z, Li G, Zhu W. MiR-187 suppresses non-small-cell lung cancer cell proliferation by targeting FGF9. Bioengineered 2020;11(1):70-80.  https://doi.org/10.1080/21655979.2019.1706287
  6. Jing L, Li H, Zhang T, Lu J, Zhong L. MicroRNA4530 suppresses cell proliferation and induces apoptosis by targeting RASA1 in human umbilical vein endothelial cells. Mol Med Rep 2019;19(5):3393-402.  https://doi.org/10.3892/mmr.2019.10000
  7. Li T, Zhou W, Li Y, Gan Y, Peng Y, Xiao Q, Ouyang C, Wu A, Zhang S, Liu J, et al. MiR-4524b-5p/WTX/beta-catenin axis functions as a regulator of metastasis in cervical cancer. PLoS One 2019;14(4):e0214822. 
  8. Chen J, Yu Y, Li S, Liu Y, Zhou S, Cao S, Yin J, Li G. MicroRNA-30a ameliorates hepatic fibrosis by inhibiting Beclin1-mediated autophagy. J Cell Mol Med 2017;21(12):3679-92.  https://doi.org/10.1111/jcmm.13278
  9. Caviglia JM, Yan J, Jang MK, Gwak GY, Affo S, Yu L, Olinga P, Friedman RA, Chen X, Schwabe RF. MicroRNA-21 and Dicer are dispensable for hepatic stellate cell activation and the development of liver fibrosis. Hepatology 2018;67(6):2414-29.  https://doi.org/10.1002/hep.29627
  10. Markovic J, Sharma AD, Balakrishnan A. MicroRNA-221: a fine tuner and potential biomarker of chronic liver injury. Cells 2020;9(8). 
  11. Yu F, Lu Z, Chen B, Wu X, Dong P, Zheng J. Salvianolic acid B-induced microRNA-152 inhibits liver fibrosis by attenuating DNMT1-mediated Patched1 methylation. J Cell Mol Med 2015;19(11):2617-32.  https://doi.org/10.1111/jcmm.12655
  12. Wu K, Ye C, Lin L, Chu Y, Ji M, Dai W, Zeng X, Lin Y. Inhibiting miR-21 attenuates experimental hepatic fibrosis by suppressing both the ERK1 pathway in HSC and hepatocyte EMT. Clin Sci (Lond) 2016;130(16):1469-80.  https://doi.org/10.1042/CS20160334
  13. Gao Y, Li J, Wang J, Li X, Li J, Chu S, Li L, Chen N, Zhang L. Ginsenoside Rg1 prevent and treat inflammatory diseases: a review. Int Immunopharmacol 2020;87:106805. 
  14. Korivi M, Hou CW, Huang CY, Lee SD, Hsu MF, Yu SH, Chen CY, Liu YY, Kuo CH. Ginsenoside-Rg1 protects the liver against exhaustive exercise-induced oxidative stress in rats. Evid Based Complement Alternat Med 2012:932165. 2012. 
  15. Mo C, Xie S, Zeng T, Lai Y, Huang S, Zhou C, Yan W, Huang S, Gao L, Lv Z. Ginsenoside-Rg1 acts as an IDO1 inhibitor, protects against liver fibrosis via alleviating IDO1-mediated the inhibition of DCs maturation. Phytomedicine 2021;84:153524. 
  16. Lee SJ, Kim SJ, Lee HS, Kwon OS. PKCdelta mediates NF-kappaB inflammatory response and downregulates SIRT1 expression in liver fibrosis. Int J Mol Sci 2019;20(18). 
  17. Chang W, Yang M, Song L, Shen K, Wang H, Gao X, Li M, Niu W, Qin X. Isolation and culture of hepatic stellate cells from mouse liver. Acta Biochim Biophys Sin (Shanghai) 2014;46(4):291-8.  https://doi.org/10.1093/abbs/gmt143
  18. Gravett AM, Dalgleish AG, Copier J. In vitro culture with gemcitabine augments death receptor and NKG2D ligand expression on tumour cells. Sci Rep 2019;9(1):1544. 
  19. Veland N, Hardikar S, Zhong Y, Gayatri S, Dan J, Strahl BD, Rothbart SB, Bedford MT, Chen T. The arginine methyltransferase PRMT6 regulates DNA methylation and contributes to global DNA hypomethylation in cancer. Cell Rep 2017;21(12):3390-7.  https://doi.org/10.1016/j.celrep.2017.11.082
  20. Yu F, Chen B, Dong P, Zheng J. HOTAIR epigenetically modulates PTEN expression via MicroRNA-29b: a novel mechanism in regulation of liver fibrosis. Mol Ther 2017;25(1):205-17.  https://doi.org/10.1016/j.ymthe.2016.10.015
  21. Dituri F, Mancarella S, Cigliano A, Chieti A, Giannelli G. TGF-Beta as multifaceted orchestrator in HCC progression: signaling, EMT, immune microenvironment, and novel therapeutic perspectives. Semin Liver Dis 2019;39(1):53-69.  https://doi.org/10.1055/s-0038-1676121
  22. Brockhausen J, Tay SS, Grzelak CA, Bertolino P, Bowen DG, d'Avigdor WM, Teoh N, Pok S, Shackel N, Gamble JR, et al. miR-181a mediates TGF-beta-induced hepatocyte EMT and is dysregulated in cirrhosis and hepatocellular cancer. Liver Int 2015;35(1):240-53.  https://doi.org/10.1111/liv.12517
  23. Miyazawa K, Miyazono K. Regulation of TGF-beta family signaling by inhibitory smads. Cold Spring Harb Perspect Biol 2017;9(3). 
  24. Kit Leng Lui S, Iyengar PV, Jaynes P, Isa Z, Pang B, Tan TZ, Eichhorn PJA. USP26 regulates TGF-beta signaling by deubiquitinating and stabilizing SMAD7. EMBO Rep 2017;18(5):797-808.  https://doi.org/10.15252/embr.201643270
  25. Yang Q, Chen HY, Wang JN, Han HQ, Jiang L, Wu WF, Wei B, Gao L, Ma QY, Liu XQ, et al. Alcohol promotes renal fibrosis by activating Nox2/4-mediated DNA methylation of Smad7. Clin Sci (Lond) 2020;134(2):103-22.  https://doi.org/10.1042/CS20191047
  26. Bian EB, Huang C, Wang H, Chen XX, Zhang L, Lv XW, Li J. Repression of Smad7 mediated by DNMT1 determines hepatic stellate cell activation and liver fibrosis in rats. Toxicol Lett 2014;224(2):175-85.  https://doi.org/10.1016/j.toxlet.2013.10.038
  27. Xue LP, Fu XL, Hu M, Zhang LW, Li YD, Peng YL, Ding P. Rg1 inhibits high glucose-induced mesenchymal activation and fibrosis via regulating miR-2113/RP11-982M15.8/Zeb1 pathway. Biochem Biophys Res Commun 2018;501(4):827-32.  https://doi.org/10.1016/j.bbrc.2018.04.055
  28. Du N, Xu Z, Gao M, Liu P, Sun B, Cao X. Combination of Ginsenoside Rg1 and Astragaloside IV reduces oxidative stress and inhibits TGF-beta1/Smads signaling cascade on renal fibrosis in rats with diabetic nephropathy. Drug Des Devel Ther 2018;12:3517-24.  https://doi.org/10.2147/DDDT.S171286
  29. Wei X, Chen Y, Huang W. Ginsenoside Rg1 ameliorates liver fibrosis via suppressing epithelial to mesenchymal transition and reactive oxygen species production in vitro and in vivo. Biofactors 2018;44(4):327-35.  https://doi.org/10.1002/biof.1432
  30. Nieto MA, Huang RY, Jackson RA, Thiery JP. Emt: 2016. Cell 2016;166(1):21-45.  https://doi.org/10.1016/j.cell.2016.06.028
  31. Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis. Trends Cell Biol 2019;29(3):212-26.  https://doi.org/10.1016/j.tcb.2018.12.001
  32. Choi SS, Syn WK, Karaca GF, Omenetti A, Moylan CA, Witek RP, Agboola KM, Jung Y, Michelotti GA, Diehl AM. Leptin promotes the myofibroblastic phenotype in hepatic stellate cells by activating the hedgehog pathway. J Biol Chem 2010;285(47):36551-60.  https://doi.org/10.1074/jbc.M110.168542
  33. Giannelli G, Koudelkova P, Dituri F, Mikulits W. Role of epithelial to mesenchymal transition in hepatocellular carcinoma. J Hepatol 2016;65(4): 798-808.  https://doi.org/10.1016/j.jhep.2016.05.007
  34. Su J, Morgani SM, David CJ, Wang Q, Er EE, Huang YH, Basnet H, Zou Y, Shu W, Soni RK, et al. TGF-beta orchestrates fibrogenic and developmental EMTs via the RAS effector RREB1. Nature 2020;577(7791):566-71.  https://doi.org/10.1038/s41586-019-1897-5
  35. Li SJ, Wang L, Sun ZX, Sun SJ, Gao J, Ma RL. LncRNA SNHG1 promotes liver cancer development through inhibiting p53 expression via binding to DNMT1. Eur Rev Med Pharmacol Sci 2019;23(7):2768-76. 
  36. Yang JJ, Tao H, Huang C, Shi KH, Ma TT, Bian EB, Zhang L, Liu LP, Hu W, Lv XW, et al. DNA methylation and MeCP2 regulation of PTCH1 expression during rats hepatic fibrosis. Cell Signal 2013;25(5):1202-11.  https://doi.org/10.1016/j.cellsig.2013.01.005
  37. Bian EB, Huang C, Ma TT, Tao H, Zhang H, Cheng C, Lv XW, Li J. DNMT1-mediated PTEN hypermethylation confers hepatic stellate cell activation and liver fibrogenesis in rats. Toxicol Appl Pharmacol 2012;264(1):13-22.  https://doi.org/10.1016/j.taap.2012.06.022
  38. Ghazanchaei A, Mansoori B, Mohammadi A, Biglari A, Baradaran B. Restoration of miR-152 expression suppresses cell proliferation, survival, and migration through inhibition of AKT-ERK pathway in colorectal cancer. J Cell Physiol 2018;234(1):769-76.  https://doi.org/10.1002/jcp.26891
  39. Friedrich M, Pracht K, Mashreghi MF, Jack HM, Radbruch A, Seliger B. The role of the miR-148/-152 family in physiology and disease. Eur J Immunol 2017;47(12):2026-38.  https://doi.org/10.1002/eji.201747132
  40. Li L, Zhang L, Zhao X, Cao J, Li J, Chu G. Downregulation of miR-152 contributes to the progression of liver fibrosis via targeting Gli3 in vivo and in vitro. Exp Ther Med 2019;18(1):425-34. https://doi.org/10.3892/etm.2019.7595