• Title/Summary/Keyword: Transforming growth factor-$\alpha$

Search Result 104, Processing Time 0.034 seconds

Transforming growth factor β1 enhances adhesion of endometrial cells to mesothelium by regulating integrin expression

  • Choi, Hee-Jung;Park, Mi-Ju;Kim, Bo-Sung;Choi, Hee-Jin;Joo, Bosun;Lee, Kyu Sup;Choi, Jung-Hye;Chung, Tae-Wook;Ha, Ki-Tae
    • BMB Reports
    • /
    • v.50 no.8
    • /
    • pp.429-434
    • /
    • 2017
  • Endometriosis is the abnormal growth of endometrial cells outside the uterus, causing pelvic pain and infertility. Furthermore, adhesion of endometrial tissue fragments to pelvic mesothelium is required for the initial step of endometriosis formation outside uterus. $TGF-{\beta}1$ and adhesion molecules importantly function for adhesion of endometrial tissue fragments to mesothelium outside uterus. However, the function of $TGF-{\beta}1$ on the regulation of adhesion molecule expression for adhesion of endometrial tissue fragments to mesothelium has not been fully elucidated. Interestingly, transforming growth factor ${\beta}1$ ($TGF-{\beta}1$) expression was higher in endometriotic epithelial cells than in normal endometrial cells. The adhesion efficiency of endometriotic epithelial cells to mesothelial cells was also higher than that of normal endometrial cells. Moreover, $TGF-{\beta}1$ directly induced the adhesion of endometrial cells to mesothelial cells through the regulation of integrin of ${\alpha}V$, ${\alpha}6$, ${\beta}1$, and ${\beta}4$ via the activation of the $TGF-{\beta}1/TGF-{\beta}RI/Smad2$ signaling pathway. Conversely, the adhesion of $TGF-{\beta}1-stimulated$ endometrial cells to mesothelial cells was clearly reduced following treatment with neutralizing antibodies against specific $TGF-{\beta}1-mediated$ integrins ${\alpha}V$, ${\beta}1$, and ${\beta}4$ on the endometrial cell membrane. Taken together, these results suggest that $TGF-{\beta}1$ may act to promote the initiation of endometriosis by enhancing integrin-mediated cell-cell adhesion.

Anti-fibrotic effects of L-2-oxothiazolidine-4-carboxylic acid via modulation of nuclear factor erythroid 2-related factor 2 in rats

  • Kim, In-Hee;Kim, Dae-Ghon;Hao, Peipei;Wang, Yunpeng;Kim, Seong-Hun;Kim, Sang-Wook;Lee, Seung-Ok;Lee, Soo-Teik
    • BMB Reports
    • /
    • v.45 no.6
    • /
    • pp.348-353
    • /
    • 2012
  • L-2-Oxothiazolidine-4-carboxylic acid (OTC) is a cysteine prodrug that maintains glutathione in tissues. The present study was designed to investigate anti-fibrotic and anti-oxidative effects of OTC via modulation of nuclear factor erythroid 2-related factor 2 (Nrf2) in an in vivo thioacetamide (TAA)-induced hepatic fibrosis model. Treatment with OTC (80 or 160 mg/kg) improved serum liver function parameters and significantly ameliorated liver fibrosis. The OTC treatment groups exhibited significantly lower expression of ${\alpha}$-smooth muscle actin, transforming growth factor-${\beta}1$, and collagen ${\alpha}1$ mRNA than that in the TAA model group. Furthermore, the OTC treatment groups showed a significant decrease in hepatic malondialdehyde level compared to that in the TAA model group. Nrf2 and heme oxygenase-1 expression increased significantly in the OTC treatment groups compared with that in the TAA model group. Taken together, these results suggest that OTC restores the anti-oxidative system by upregulating Nrf2; thus, ameliorating liver injury and a fibrotic reaction.

Regulation of Pathological Markers during Hepatic Fibrogenesis in Rats

  • Jeong, Won-il;Jeong, Kyu-shik
    • Proceedings of the Korean Society of Veterinary Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.16-16
    • /
    • 2003
  • Hepatic fibrosis is a common response to various chronic hepatic injuries and occurs as a consequence of the transformation of hepatic stellate cells into myofibroblasts (MFBs) producing abnormal extracellular matrix which is mainly induced by transforming growth factor-beta (TGF-${\beta}$), especially TGF-${\beta}$1 [1,2]. As the liver becomes fibrotic, there are both quantitative and qualitative changes in several pathological markers related to the hepatic fibrosis. These fibrotic markers in liver are mainly consisted of several proteins and cytokines, but sometimes included specific type cells. The aim of this study was to detect expression and change of markers (TGF-${\beta}$, mallory body, cytokeratin, ${\alpha}$-SMA, hypoxia, collagen) during hepatic fibrogenesis. (omitted)

  • PDF

Effects of TGF-${\beta}1$ Ribbon Antisense on $CCl_4$-induced Liver Fibrosis

  • Doh, Kyung-Oh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • Ribbon-type antisense oligonucleotide to TGF-${\beta}1$ (TGF-${\beta}1$ RiAS) was designed and tested to prevent or resolve the fibrotic changes induced by $CCl_4$ injection. When Hepa1c1c7 cells were transfected with TGF-${\beta}1$ RiAS, the level of TGF-${\beta}1$ mRNA was effectively reduced. TGF-${\beta}1$ RiAS, mismatched RiAS, and normal saline were each injected to mice via tail veins. When examined for the biochemical effects on the liver, TGF-${\beta}1$ mRNA levels were significantly reduced only in the TGF-${\beta}1$ RiAS-treated group. The results of immunohistochemical studies showed that TGF-${\beta}1$ RiAS prevented the accumulation of collagen and ${\alpha}$-smooth muscle actin, but could not resolve established fibrosis. These results indicate that ribbon antisense to TGF-${\beta}1$ with efficient uptake can effectively prevent fibrosis of the liver.

Inhibitory Effect of 1-O-Hexyl-2,3,5-Trimethylhydroquinone on Dimethylnitrosamine-induced Liver Fibrosis in Male SD Rats

  • Jung, Yu-Ri;Lee, Young-Jung;Lee, Nam-Jin;Lin, Chun-Mai;Moon, Jun-Hawn;Chai, Hee-Yul;Kang, Jong-Koo
    • Toxicological Research
    • /
    • v.26 no.3
    • /
    • pp.193-201
    • /
    • 2010
  • Hepatic fibrosis represents the main complication of most chronic liver disorders and, regardless of its etiology, is characterized by excessive deposition of extracellular matrix components. In this study, we examined that 1-O-Hexyl-2,3,5-Trimethylhydroquinone (HTHQ), a potent anti-oxidative agent, could prevent experimental hepatic fibrosis induced by dimethylnitrosamine (DMN) in male SD rats. Except for vehicle control group, other groups were induced hepatic fibrosis by intraperitoneal injection with DMN (10 mg/ml/kg) on 3 consecutive days weekly for 4 weeks. During the same 4 weeks, control and DMN groups were given vehicle and HTHQ 50, 100 and 200 groups were orally administered HTHQ (50, 100, 200 mg/kg respectively). In HTHQ 100 and 200 groups, relative liver weight and serum chemistry level improved significantly. HTHQ reduced hydroxyproline (p < 0.05) and malondialdehyde (p < 0.05) level in the liver. Histopathological examination of H&E, Masson's trichrome stain showed the reduced fibrotic septa in HTHQ 100 and 200 groups. HTHQ administration showed reduced mRNA level of PDGF (Platelet-derived growth factor), $\alpha$-SMA ($\alpha$-smooth muscle actin) and TGF-$\beta$ (transforming growth factor-$\beta$) than DMN-induced hepetic fibrosis animals in the liver tissue. In this study, we showed that HTHQ improves against DMN-induced liver fibrosis in male SD rats.

Change of Extracellular Matrix of Human Vocal Fold Fibroblasts by Vibratory Stimulation (진동이 성대세포주의 세포외기질 변화에 대한 연구)

  • Kim, Ji Min;Shin, Sung-Chan;Kwon, Hyun-Keun;Cheon, Yong-Il;Ro, Jung Hoon;Lee, Byung-Joo
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.32 no.1
    • /
    • pp.15-23
    • /
    • 2021
  • Background and Objectives During speech, the vocal folds oscillate at frequencies ranging from 100-200 Hz with amplitudes of a few millimeters. Mechanical stimulation is an essential factor which affects metabolism of human vocal folds. The effect of mechanical vibration on the cellular response in the human vocal fold fibroblasts cells (hVFFs) was evaluated. Materials and Method We created a culture systemic device capable of generating vibratory stimulations at human phonation frequencies. To establish optimal cell culture condition, cellular proliferation and viability assay was examined. Quantitative real time polymerase chain reaction was used to assess extracellular matrix (ECM) related and growth factors expression on response to changes in vibratory frequency and amplitude. Western blot was used to investigate ECM and inflammation-related transcription factor activation and its related cellular signaling transduction pathway. Results The cell viability was stable with vibratory stimulation within 24 h. A statistically significant increase of ECM genes (collagen type I alpha 1 and collagen type I alpha 2) and growth factor [transforming growth factor β1 (TGF-β1) and fibroblast growth factor 1 (FGF-1)] observe under the experimental conditions. Vibratory stimulation induced transcriptional activation of NF-κB by phosphorylation of p65 subunit through cellular Mitogen-activated protein kinases activation by extracellular signal regulated kinase and p38 mitogen-activated protein kinases (MAPKs) phosphorylation on hVFFs. Conclusion This study confirmed enhancing synthesis of collagen, TGF-β1 and FGF was testified by vibratory stimulation on hVFFs. This mechanism is thought to be due to the activation of NF-κB and MAPKs. Taken together, these results demonstrate that vibratory bioreactor may be a suitable alternative to hVFFs for studying vocal folds cellular response to vibratory vocalization.

NOD2 signaling pathway is involved in fibronectin fragment-induced pro-catabolic factor expressions in human articular chondrocytes

  • Hwang, Hyun Sook;Lee, Mi Hyun;Choi, Min Ha;Kim, Hyun Ah
    • BMB Reports
    • /
    • v.52 no.6
    • /
    • pp.373-378
    • /
    • 2019
  • The nucleotide-binding and oligomerization domain (NOD) is an innate pattern recognition receptor that recognizes pathogen- and damage-associated molecular patterns. The 29-kDa amino-terminal fibronectin fragment (29-kDa FN-f) is a matrix degradation product found in the synovial fluids of patients with osteoarthritis (OA). We investigated whether NOD2 was involved in 29-kDa FN-f-induced pro-catabolic gene expression in human chondrocytes. The expression of mRNA and protein was measured using quantitative real-time polymerase chain reaction (qrt-PCR) and Western blot analysis. Small interfering RNAs were used for knockdown of NOD2 and toll-like receptor 2 (TLR-2). An immunoprecipitation assay was performed to examine protein interactions. The NOD2 levels in human OA cartilage were much higher than in normal cartilage. NOD1 and NOD2 expression, as well as pro-inflammatory cytokines, including interleukin-1beta (IL-$1{\beta}$) and tumor necrosis factor-alpha (TNF-${\alpha}$), were upregulated by 29-kDa FN-f in human chondrocytes. NOD2 silencing showed that NOD2 was involved in the 29-kDa FN-f-induced expression of TLR-2. Expressions of IL-6, IL-8, matrix metalloproteinase (MMP)-1, -3, and -13 were also suppressed by TLR-2 knockdown. Furthermore, NOD2 and TLR-2 knockdown data demonstrated that both NOD2 and TLR-2 modulated the expressions of their adaptors, receptorinteracting protein 2 (RIP2) and myeloid differentiation 88, in 29-kDa FN-f-treated chondrocytes. 29-kDa FN-f enhanced the interaction of NOD2, RIP2 and transforming growth factor beta-activated kinase 1 (TAK1), an indispensable signaling intermediate in the TLR-2 signaling pathway, and activated nuclear factor-${\kappa}B$ (NF-${\kappa}B$), subsequently leading to increased expressions of pro-inflammatory cytokines and cartilage-degrading enzymes. These results demonstrate that 29-kDa FN-f modulated pro-catabolic responses via cross-regulation of NOD2 and TLR-2 signaling pathways.

Inhibitory Effect of Rutaecarpine on Thioacetamide (TAA)-induced Hepatic Fibrosis

  • Ahn, Hyunjin;Lee, Sung-Jin;Nam, Kung-Woo;Mar, Woongchon
    • Natural Product Sciences
    • /
    • v.20 no.4
    • /
    • pp.262-268
    • /
    • 2014
  • Rutaecarpine is one of the major alkaloids present in the fruits of Evodia rutaecarpa. In this study, rutaecarpine was evaluated, both in vitro and in vivo, for its hepatoprotective properties against thioacetamide (TAA)-induced hepatic fibrosis. The results showed that rutaecarpine inhibited TAA-induced cytotoxicity, reduced the expression of the fibrogenic cytokine transforming growth factor ${\beta}1$ ($TGF-{\beta}1$), and induced the expression of bcl-2. To evaluate its in vivo effects, animal models with TAA-induced hepatic fibrosis were utilized. Levels of liver tissue injury-associated enzymes, including alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were monitored. $TGF-{\beta}1$ and the ${\alpha}$-smooth muscle actin (${\alpha}$-SMA) were measured as markers of the protective effects on hepatic fibrosis. The AST and ALT levels in blood were greatly enhanced by TAA and completely blunted by rutaecarpine. Rutaecarpine led to the down-regulation of $TGF-{\beta}$ and Bax mRNA expression, as well as the up-regulation of Bcl-2 and $Bcl-X_L$ mRNA levels. In conclusion, rutaecarpine inhibited TAA-induced hepatic fibrosis and apoptosis by inducing the expression of Bcl-2 while blocking $TGF-{\beta}1$ in our TAA-intoxicated model.

Preferential Expression of IgA Isotype Switching-associated Transcripts in Mouse Intestinal Lymphoid Tissues (마우스 내장 림프조직에서 우세하게 발현되는 IgA Isotype Switching 관련 전사체의 분석)

  • Chae, Byung-Chul;Chun, Sung-Ki;Seo, Goo-Young;Kim, Hyun-A;Kim, Pyeung-Hyeun
    • IMMUNE NETWORK
    • /
    • v.5 no.4
    • /
    • pp.215-220
    • /
    • 2005
  • Background: Transforming growth factor-${\beta}$ (TGF-${\beta}1$) directs class switch recombination (CSR) to IgA isotype, which is a predominant antibody in mucosal surfaces. Although IgA is preferentially committed in mucosal lymphoid tissues, it is not definitely established whether hallmarks of IgA CSR such as IgA germ-line transcripts (GLT ${\alpha}$), post-switch transcripts (PST ${\alpha}$) and circle transcripts (CT ${\alpha}$) are readily expressed in such tissues. Therefore, we compared the expression of these transcripts among mouse Peyer's patches (PP), mesenteric lymph nodes (MLN), and spleen. Methods: Levels of GLTs, PSTs and CTs were measured by RT-PCR in isolated PPs, MLNs and spleen cells. Results: GLT ${\alpha}$ and PST ${\alpha}$ were well expressed in PP and MLN cells but in spleen cells. Similar patterns were observed in the expression of GL ${\gamma}$2b and PST ${\gamma}$2b. On the other hand, these transcripts were only inducible in spleen cells upon stimulated with LPS and TGF-${\beta}1$. In addition, CT${\alpha}$ and CT${\gamma}$2b were detected in PP cells. Conclusion: PP B cells readily express IgA GLT, PST, and CT. Overall expression patterns of these transcripts were similar in MLN cells. Thus, these results suggest that microenvironment of PP and MLN influences spontaneous IgA CSR, which lacks in systemic lymphoid tissues such as spleen.

New evidence on mechanisms of action of spa therapy in rheumatic diseases

  • Tenti, Sara;Fioravanti, Antonella;Guidelli, Giacomo Maria;Pascarelli, Nicola Antonio;Cheleschi, Sara
    • CELLMED
    • /
    • v.4 no.1
    • /
    • pp.3.1-3.8
    • /
    • 2014
  • Spa represents a treatment widely used in many rheumatic diseases (RD). The mechanisms by which immersion in mineral or thermal water ameliorates RD are not fully understood. The net benefit is probably the result of a combination of factors, among which the mechanical, thermal and chemical effects are most prominent. Buoyancy, immersion, resistance and temperature play important roles. According to the gate theory, pain relief may be due to the pressure and temperature of the water on skin; heat may reduce muscle spasm and increase the pain threshold. Mud-bath therapy increases plasma ${\beta}$-endorphin levels and secretion of corticotrophin, cortisol, growth hormone and prolactin. It has recently been demonstrated that thermal mud-bath therapy induces a reduction in circulating levels of prostaglandin E2, leukotriene B4, interleukin-$1{\beta}$ and tumour necrosis factor-${\alpha}$, important mediators of inflammation and pain. Furthermore, balneotherapy has been found to cause an increase in insulin-like growth factor-1, which stimulates cartilage metabolism, and transforming growth factor-${\beta}$. Beneficial anti-inflammatory and anti-degenerative effects of mineral water were confirmed in chondrocytes cultures, too. Various studies in vitro and in humans have highlighted the positive action of mud-packs and thermal baths, especially sulphurous ones, on the oxidant/antioxidant system. Overall, thermal stress has an immunosuppressive effect. Many other non-specific factors may also contribute to the beneficial effects observed after spa therapy in some RD, including effects on cardiovascular risk factors (e.g. adipokines) and changes in the environment, pleasant surroundings and the absence of work duties.