• Title/Summary/Keyword: Transformer Winding Process

Search Result 23, Processing Time 0.026 seconds

A Heuristic Scheduling Algorithm for Transformer Winding Process with Non-identical Parallel Machines (이종병렬기계로 구성된 변압기 권선공정의 생산일정계획)

  • 박창권;장길상;이동현
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.26 no.2
    • /
    • pp.35-41
    • /
    • 2003
  • This paper proposes a heuristic scheduling algorithm to satisfy the customer's due date in the production process under make to order environment. The goal is to achieve the machine scheduling in the transformer winding process, in which consists of parallel machines with different machine performances. The winding is important production process in the transformer manufacturing company. The efficiency of the winding machines is different according to the voltage capacity and the winding type. This paper introduces a heuristic approach in the transformer winding process where the objective function is to minimize the total tardiness of jobs over due dates. The numerical experiment is illustrated to evaluate the performance.

Unit Process Scheduling System Development and Calculation and Control Method of Planned Leadtime Using Multiple Linear Regression under Make to Order Manufacturing System in Transformer Winding Process (변압기 권선공정에서의 수주 제작품의 단위공정 일정관리 시스템 개발과 다중회귀분석을 이용한 계획 리드타임 산출 및 관리 방안)

  • Kang, Dae-Wan;Kang, Chang-Wook;Kang, Hae-Woon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.3
    • /
    • pp.117-124
    • /
    • 2008
  • Ultra-high voltage transformer industry has characteristic of small quantity batch production system by other order processing unlike general mass production systems. In this industry, observance of time deadline is very important in market competitive power security and company continued existence. The transformer winding is a process that rolls a coil is coated with an electric insulation material in order to generate the required voltage using the voltage fluctuation. The winding process is very important production process in the extra-high voltage transformer manufacturing industry because winding process is core process that occupy weight about half of whole process and is process that decide current ratio of transformer. This paper proposes a statistical calculation and control method of planned leadtime on the basis of real data and informations for the A company in transformer winding process. Moreover, we develop unit process scheduling system.

An Algorithm Design and Information System Development for Production Scheduling under Make-to-Order Environments (수주생산환경에서 생산일정계획 알고리듬 설계 및 정보 시스템 구현: 변압기 제조공정의 권선공정 적용사례)

  • Park, Chang-Kwon;Jang, Gil-Sang;Lee, Dong-Hyun
    • IE interfaces
    • /
    • v.16 no.2
    • /
    • pp.185-194
    • /
    • 2003
  • This paper deals with a realistic production scheduling under a make-to-order production environment. The practical case is studied on the transformer winding process in the 'H' company. The transformer winding is a process that rolls a coil that is coated with an electric insulation material in order to generate the required voltage using the voltage fluctuation. This process occupies an important position among the production processes in the transformer manufacturing company. And this process is composed of parallel machines with different performances according to the voltage capacity and winding type. In this paper, we propose a practical heuristic algorithm for production scheduling to satisfy the customer’s due date under a make-to-order production environment. Also, we implement the production scheduling system based on the proposed heuristic algorithm. Consequently, the proposed heuristic algorithm and the implemented production scheduling system are currently working in the transformer production factory of the ‘H’ company.

Enhanced Switching Pattern to Improve Energy Transfer Efficiency of Active Cell Balancing Circuits Using Multi-winding Transformer (다중권선 변압기를 이용한 능동형 셀 밸런싱 회로의 에너지 전달 효율을 높이기 위한 향상된 스위칭 패턴)

  • Lee, Sang-Jung;Kim, Myoungho;Baek, Ju-Won;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.279-285
    • /
    • 2019
  • This study proposes an enhanced switching pattern that can improve energy transfer efficiency in an active cell-balancing circuit using a multiwinding transformer. This balancing circuit performs cell balancing by transferring energy stored in a specific cell with high energy to another cell containing low energy through a multiwinding transformer. The circuit operates in flyback and buck-boost modes in accordance with the energy transfer path. In the conventional flyback mode, the leakage inductance of the transformer and the stray inductance component of winding can transfer energy to an undesired path during the balancing operation. This case results in cell imbalance during the cell-balancing process, which reduces the energy transfer efficiency. An enhanced switching pattern that can effectively perform cell balancing by minimizing the amount of energy transferred to the nontarget cells due to the leakage inductance components in the flyback mode is proposed. Energy transfer efficiency and balancing speed can be significantly improved using the proposed switching pattern compared with that using the conventional switching pattern. The performance improvements are verified by experiments using a 1 W prototype cell-balancing circuit.

A Study on the Analysis of Internal Power Loss Including Leakage Inductance of Power Transformer for DAB Converter (DAB 컨버터용 전력 변압기의 누설 인덕턴스를 포함한 내부 전력 손실 분석에 관한 연구)

  • Yoo, Jeong Sang;Ahn, Tae Young;Gil, Yong Man
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.95-100
    • /
    • 2022
  • In this paper, a power loss analysis technique of a high-frequency transformer of a bidirectional DAB (Dual Active Bridge) converter is reported. To miniaturize the transformer of the dual active bridge converter, a resonant inductor was designed with an air gap included low-coupled rate state core to combine leakage inductor with the resonant inductor which is required for soft-switching. In this paper, leakage inductance and magnetizing inductance, core material, type of winding and winding method are included in the dual active bridge transformer loss analysis process to enable optimal design at the initial design stage. Transformer loss analysis for dual active bridge with a switching frequency of 200 kHz and maximum output of 5 kW was executed, and elements necessary for design based on the number of turns on the primary side were graphed while maintaining the transformer turns ratio and window area. In particular, it was possible to determine the optimal number of turns and thickness of the transformer, and ultimately, the total loss of the transformer could be estimated.

The Calculation of Transformer Inductance by the Finite Element Method (유한요소법에 의한 변압기 인덕턴스 계산)

  • 배진호;노채균
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.7
    • /
    • pp.267-275
    • /
    • 1985
  • The finite element method for calculating single phase transformer inductance is presented in this paper. There are three basic definitions of saturated transormer inductance. The set of nonlinear finite element equations is solved by the Newton-Raphson method which assures nearly quadratic convergence of the iteration process. The effect of perturbation of currents of this transformer is used to calculate the saturated winding inductance. This approach is used to calculate the apparent, effective and incremental inductance of single phase transformer. The apparent inductance is in good agreement with resting result. The approach enabled one to study the variation of winding inductance according to the saturation levels in the core at any operating point.

  • PDF

A STUDY ON THE RISK PROTECTION OF THE MOLD TRANSFORMER

  • Chung, Young-Ki;Jung, Jong-Wook;Kim, Jae-Chul;Kwak, Hee-Ro;Lee, Su-Kyung
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.219-226
    • /
    • 1997
  • This paper investigates and analyzes the installation and failure status of mold transformer being used in domestic subways and describes the extinguishing process by time through the combustion test of winding part of mold transformer. Condition of installed mold transformers and classes of fire were surveyed and the mold transformer was burned in a horizontal heating furnace. It was confirmed that the mold transformer is self extinguishing and nonflammability. According to this results, the suitable standard of fire protection for the mold transformer was demanded after review of domestic and abroad law. It is expected that the cost of fire protection equipment can be reduced by using the status and combustion test result of mold transformer.

  • PDF

Experimental Study of Impulsive High Current Generating Apparatus (충격전류발생장치의 실험적연구)

  • An Kyun Kim
    • 전기의세계
    • /
    • v.24 no.4
    • /
    • pp.73-76
    • /
    • 1975
  • In this study, a design scheme of an impulsive high current generating device is presented. The device is proved to be effective in producing rather complex type of the permanent magnet. Principally, the apparatus designed same to the ordinary potential transformer or current transformer, but, it has a certain differences that the primary winding of many turns is excited by d.c. source and the secondary winding of a few turns induce low voltage and high current at the instant when opening a switch in the primary circuit. This paper does not include magnet production process. Rather, it deals with the analytical studies of the devices, the designing procedure of the experimental setup, and some results from the experimental data are presented as a preliminary study. The experimental results are found to agree well with the theoritical analysis presented in this paper.

  • PDF

Phase transformer method and its application (위상변성방식과 그 응용)

  • 오상세
    • 전기의세계
    • /
    • v.13 no.2
    • /
    • pp.1-4
    • /
    • 1964
  • Phase transformation is used to change some phase from phase in A.C. system. We have been used Scott or Fork connection in phase transformation the otherwise phase transformation was constructed from M-G set. From this M-G set, we could make phase shift facilities by mannual. Now, I can derive more easy phase transformation from taking another method. I believe this new phase transformation method in the first thing in the world. And so, I am going to explain about phase transformer construction process. The first, we could devide into equal part of core around the iron core as to be same size. The second, you will make primary and secondary winding on the core. The third, when you will supplied three phase A.C. at the terminal of primary winding you can get e.m.f. inducing of some phase at secondary. And so, we could make phase change from some phase A.C. We can apply this principle in many fields, i.e., freequency changer, phase leader of no use condenser, voltage regulator in keeping balance, and D.C. generator. And more, I will introduce in details concerning main pinciple and theory through following chapter.

  • PDF

Internal Fault Classification in Transformer Windings using Combination of Discrete Wavelet-Transforms and Back-propagation Neural Networks

  • Ngaopitakkul Atthapol;Kunakorn Anantawat
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.3
    • /
    • pp.365-371
    • /
    • 2006
  • This paper presents an algorithm based on a combination of Discrete Wavelet Transforms and neural networks for detection and classification of internal faults in a two-winding three-phase transformer. Fault conditions of the transformer are simulated using ATP/EMTP in order to obtain current signals. The training process for the neural network and fault diagnosis decision are implemented using toolboxes on MATLAB/Simulink. Various cases and fault types based on Thailand electricity transmission and distribution systems are studied to verify the validity of the algorithm. It is found that the proposed method gives a satisfactory accuracy, and will be particularly useful in a development of a modern differential relay for a transformer protection scheme.