• Title/Summary/Keyword: Transformer Design

Search Result 896, Processing Time 0.037 seconds

A Study on the Design and Structure of A Microwave Broadband Multi-Section Power Divider (마이크로파대 광대역 다단 전력분배기의 설계방법과 구조에 관한 연구)

  • Park, Jun-Seok;Kim, Hyeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1829-1831
    • /
    • 2001
  • A novel multi-section power divider configuration is proposed to obtain wide-band frequency performance up to microwave frequency region. Design procedures for the proposed microwave broadband power divider are composed of a planar multi-section three-ports hybrid and a waveguide transformer design procedures. The multi-section power divider is based on design theory of the optimum quarter-wave transformer. Furthermore, in order to obtain the broadband isolation performance between the two adjacent output ports, the odd mode equivalent circuit should be matched by using the lossy element such as resistor. The derived design formula for calculating these odd mode matching elements is based on the singly terminated filter design theory. The waveguide transformer section is designed to suppress the propagation of the higher order modes such as waveguide modes due to employing the metallic electric wall. Simulation and experiment show excellent performance of multi section power divider.

  • PDF

Study on Insulation Design of Surge Voltages for Convex Winding type Ribbon Core Transformer (Convex형 권선배치방식을 취한 권철심변압기의 충격파절연설계에 관한 연구)

  • 황영문;조철제;김중한
    • 전기의세계
    • /
    • v.22 no.3
    • /
    • pp.13-24
    • /
    • 1973
  • In this report, as a method to solve the problems on impulse insulation coordination in ribbon core transformer owing to it's BIL stepping up, new design to alter winding distribution of multiple-layer concentric winding to Convex type winding is proposed. The main focus of this method is to settle the weakness of axial direction insulation strength and as a result of theoretical analysis through experiment of model transformers, the following conclusions are obtained; (a) As the electric loadings in a design which increases by strengthenning axial direction insulation endurance in presently avarilable transformers owing to it's BIL stepping up can be restricted in Convex type winding, reasonable design will be suited to the transformer with higher BIL. (b) Convex type winding is a very improved insulation design in respect of insulation coordination because it has shield plate effect to even impulse oscillation. (c) There is a disadvantage to cause leakage flux to increase in Convex type winding, however, the constancy of electric loadings in a design in spite of BIL stepping up restricts the increase of leakage flux to some extent.

  • PDF

An Impedance Transformer with Unequal Split Based on S-Parameter Conversion (S-파라미터 변환을 통한 비대칭 분배되는 임피던스 변환기)

  • Kim, Young
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.4
    • /
    • pp.361-366
    • /
    • 2016
  • This paper presents an arbitrary impedance transformer with unequal split, based on S- to admittance parameter conversion. When compared even/ odd- mode analysis, the parameter conversion design method constitutes a simple design method to include phase delay information and arbitrary port impedances and asymmetrical configurations. To validate this design method, we designed a 50 to $12.5{\Omega}$ impedance transformer with a 3:1 unequal power split, at an operating frequency of 1 GHz. To implement the proposed impedance transformer, the low impedance transmission lines of calculated result are fabricated by the transmission line connected shunt open stub. Good experimental performances were obtained, in full agreement with simulated results.

Tracepro Simulation Design and Evaluation for the Double Blind Light Pipe Daylighting System (Tracepro를 활용한 이중 블라인드 광파이프 채광 시스템의 블라인드 설계 및 시스템 효율 평가)

  • Kang, Eun-Chul;Lee, Euy-Joon;Yo, Seong-Yeon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.6
    • /
    • pp.515-520
    • /
    • 2012
  • A daylighting system includes three parts; light collector, light transformer and light distributor. A DBLP(Double blind light pipe) daylighting system consists of a double blind light collector, a mirror duct type light transformer and a prism film light pipe distributor. The double blinds for a light collection are used to track the sun's altitude and azimuth movements throughout the day. Behind both sets of blinds is the light transformer, which is based on a rectangular cone shaped light duct. The light transformer was designed to efficiently deliver the light into the light pipe within a 30 degree radial spread for the efficient light into the distributor. In this study, DBLP system efficiency was simulated, evaluated and optimized by Tracepro as a popular ray trace light design simulation program. The results indicated that DBLP system efficiency evaluated a maximum 22.4% in case of Spring/Fall season solar noon time. While the overall average system efficiency in the morning and afternoon is evaluated about 10%.

Breakdown Properties for Electrical Insulation Design of Double Pancake Coil Type HTS Transformer (Double Pancake Coil형 고온초전도 변압기의 전기적 절연 설계를 위한 절연파괴 특성)

  • Baek, Seung-Myeong;Jung, Jong-Man;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.52-57
    • /
    • 2002
  • High temperature superconductors can only be applied against an engineering specification that has to be determined for each particular application form the design requirements for economic viability and for operation margins in service. However, in order to realize the HTS transformer, it is necessary to establish the high voltage insulation technique in cryogenic temperature. Therefore, the composite insulation of double pancake coil type transformer are described and ac breakdown voltage characteristics of liquid nitrogen($LN_{2}$) under HITS pancake coil electrode made by Bi-2223/Ag are studied. Breakdown in $LN_{2}$ is dominated electrode shape and distance. And we investigated AC breakdown properties of $LN_{2}$ and complex conition of cryogenic gaseous nitrogen($CGN_{2}$) obove a $LN_{2}$ surface. Also, the surface voltage of GFRP was measured as a function of thickness and electrode distance in $LN_{2}$ and complex condition of $CGN_{2}$ above a $LN_{2}$ surface. This research presented information of electrical insulation design for double pancake coil type HTS transformer.

  • PDF

Design of a 33 MVA HTS Transformer with OLTC (OLTC를 고려한 33 MVA 초전도 변압기 설계)

  • Choi, J.H.;Lee, S.W.;Park, M.J.;Kim, W.S.;Choi, K.D.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.885-886
    • /
    • 2006
  • We have proposed a 100 MVA, 3 phases, 154 kV class HTS transformer which will substitute for 60 MVA conventional transformer. In this paper, we designed conceptually the structure of the superconducting windings of a single phase 33 MVA transformer. The power transformer of 154 kV class has a tertiary winding besides primary and secondary windings. So the HTS transformer should have the 3rd superconducting winding, it makes the cost of the HTS transformer high and the efficiency low. Further more we considered On Load Tap Changer (OLTC) in HTS power transformer. OLTC equipment is required for fitting to a power transformer by which the voltage ratio between the windings can be varied while the transformer is on load. We analyzed the electrical characteristics of the HTS transformer such as magnetic stress and AC loss.

  • PDF

A Study on the Systematization Design Technique of a Differential Transformer (차동변압기의 계열화 설계 기법에 관한 연구)

  • Cho K.J.;Lee J.I.;Yoon S.A.;Cha I.S.;Lee K.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.162-167
    • /
    • 2003
  • In this paper, systematization design method by analogical Interpretation which is profitable in the compatability and standardization of developed products and is useful of reducing construction time and price was introduced. Systematization design based on analogical interpretation is a method which systematizes each characteristic with mathematical description in order to make variable design parameters correspond with the terms desired. In this paper, after choosing a differential transformer as the sample for design components each characteristic was expressed mathematically by analogical interpretation and miniaturized ones were manufactured by similarity factors. The relationship between input voltages of an actual differential transformer and the model and output voltages occurred by the change of the displacements in operational axis was shown.

  • PDF

Design of MLC chip quadrature hybrid for 2 GHz band mobile communications (2 GHz대 이동 통신용 MLC 칩 90$^{\circ}$ 하이브리드 설계)

  • 심성훈;강종윤;윤석진;신현용;윤영중;김현재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.115-118
    • /
    • 2002
  • This paper presents the design method and performance characteristics of a chip-type quadrature hybrid using LTCC-MLC technology. The design method for a chip-type quadrature hybrid is based on lumped element equivalent circuit of quarter-wave transformer. The chip-type quadrature hybrid was miniaturized to a greater extent using multilayer structure and lumped element. The proposed design method can also reduce the undesirable parasitic effects of the chip-type quadrature hybrid. The proposed chip-type quadrature hybrid was designed and fabricated using the proposed design method and the equivalent circuit model of a quarter-wave transformer. Fabrication and measurement of designed chip-type quadrature hybrid show much smaller size than a conventional distributed quadrature hybrid and a good agreement with simulated results.

  • PDF

Design Optimization of High-Voltage Pulse Transformer for High-Power Pulsed Application (고출력 펄스응용을 위한 고전압 펄스변압기 최적설계)

  • Jang, S.D.;Kang, H.S.;Park, S.J.;Han, Y.J.;Cho, M.H.;NamKung, W.
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1297-1300
    • /
    • 2008
  • A conventional linear accelerator system requires a flat-topped pulse with less than ${\pm}$ 0.5% ripple to meet the beam energy spread requirements and to improve pulse efficiency of RF systems. A pulse transformer is one of main determinants on the output pulse voltage shape. The pulse transformer was investigated and analyzed with the pulse response characteristics using a simplified equivalent circuit model. The damping factor ${\sigma}$ must be >0.86 to limit the overshoot to less than 0.5% during the flat-top phase. The low leakage inductance and distributed capacitance are often limiting factors to obtain a fast rise time. These parameters are largely controlled by the physical geometry and winding configuration of the transformer. A rise time can be improved by reducing the number of turns, but it produces larger pulse droop and requires a larger core size. By tradeoffs among these parameters, the high-voltage pulse transformer with a pulse width of 10 ${\mu}s$, a rise time of 0.84 ${\mu}s$, and a pulse droop of 2.9% has been designed and fabricated to drive a klystron which has an output voltage of 284 kV, 30-MW peak and 60-kW average RF output power. This paper describes design optimization of a high-voltage pulse transformer for high-power pulsed applications. The experimental results were analyzed and compared with the design. The design and optimal tuning parameter of the system was identified using the model simulation.

  • PDF

Open-Phase Condition Detecting System for Transformer Connected Power Line in Nuclear Power Plant (원자력발전소 변압기 연결 선로 결상 검출 시스템)

  • Ha, Che-Wung;Lee, Do-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.254-259
    • /
    • 2015
  • On January 30, 2012 an auxiliary component of Byron Unit 2 was tripped on bus under voltage. The cause of the event was the failure of the C-phase insulator track for the Unit 2 station auxiliary transformer(SAT) revenue metering transformer. In addition to this event, other events have occurred at other plants resulting in an open-phase condition.[1] Therefore, Nuclear Regulatory Commission(NRC) has requested that not only nuclear power plant(NPP) operating company but also its Design Certification(DC) applicant have to prepare open-phase detecting system in their operating plants and design document. In this paper, various open-phase conditions are simulated in NPP using Electromagnetic Transient Program(EMTP) and Atpdraw, and open-phase condition detecting system is proposed for Main Transformer(MT), Unit Auxiliary Transformer(UAT) and SAT connected power line in NPP.