• Title/Summary/Keyword: Transfer function method

Search Result 1,332, Processing Time 0.038 seconds

Substructure Analysis of Steering System using Transfer Function Synthesis Method (전달함수합성법을 이용한 스티어링 시스템의 부분구조 해석)

  • Hong, Sung-Kyu;Kim, Do-Youn;Lee, Doo-Ho;Kim, Chan-Mook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.201-206
    • /
    • 2000
  • In this work transfer function synthesis method based on FRF data of each substructure is investigated for a complex structure composed of many substructures. Though the transfer function synthesis method has superiority to analyze the characteristics of interfaces among substructures effectively, many problems arise in the computation process, especially matrix inversion process. Due to computational problems, the error between the data obtained by test and the predictions through computations is inevitable. So in this paper, computational aspects in the transfer function synthesis method are examined through a steering system problem of passenger car. For the FBS method, frequency response functions of 3 substructures are measured experimentally. Effects of several parameters such as matrix inversion method, connection conditions between substructures and off-diagonal terms on system response are studied numerically.

  • PDF

Modeling of Time Delay Systems using Exponential Analysis Method

  • Iwai, Zenta;Mizumoto, Ikuro;Kumon, Makoto;Torigoe, Ippei
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2298-2303
    • /
    • 2003
  • In this paper, very simple methods based on the exponential analysis are presented by which transfer function models for processes can easily be obtained. These methods employ step responses or impulse responses of the processes. These can also give a more precise transfer function model compared to the well-known graphical methods. Transfer functions are determined based on Prony method, which is one of the oldest and the most representative methods in the exponential analysis. Here, the method is reformed and applied to obtain the so-called low-order transfer function with pure time delay from the data of the step response. The effectiveness of the proposed method is examined through several numerical examples and experiments of the 2-tank level control process.

  • PDF

Numerical calculation of contrast transfer function for periodic line-space patterns (주기적인 선물체에 대한 Contrast Transfer Function의 수치계산)

  • 김형수;전영세;이종웅;김성호
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.6
    • /
    • pp.396-402
    • /
    • 1998
  • The measurement of OTF(optical transfer function) is used for evalution of imaging performance of optical system as a standard method. In the mass-production, the contrast measurement of projected patterns is also popular because of its simplicity. In this study, a computer program which evaluates the CTF(contrast transfer function) of optical system for periodic line-space patterns is developed by using the diffraction imaging theory. The MTF(modulation transfer function) and CTF of an aberrated system are evaluated and analyzed for the third order aberrations expressed by the C-coefficients and the Zemike polynomials.

  • PDF

Experimental Verification on Motion Error Analysis Method of Hydrostatic Tables Using Transfer Function (전달함수를 이용한 유정압테이블 운동정밀도 해석법의 실험적 검증)

  • Oh, Yoon-Jin;Park, Chun-Hong;Lee, Chan-Hong;Hong, Joon-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.64-71
    • /
    • 2002
  • A new model utilizing a transfer function was proposed in the previous paper fur analizing motion errors of hydrostatic tables. Validity of the proposed method was theoretically verified as the calculated motion errors were compared with the results by conventional multi pad method. In this paper, relationship between form error of rail and motion errors of hydrostatic table is analized theoretically in order to comprehand so-called ‘averaging effect of oil film’. Experiments on the motion errors of hydrostatic table is conducted with 3 different rails, and the results are compared with the results calculated by Transfer Function Method. The results show good agreement. From the results, it is verified that TFM is very effective to analize the motion errors of hydrostatic table.

Experimental Verification on Motion Error Analysis Method of Hydrostatic Tables Using Transfer Function (전달함수를 이용한 유정압테이블 운동정밀도 해석법의 실험적 검증)

  • 박천흥;오윤진;이후상;홍준희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.454-458
    • /
    • 2001
  • A new model utilizing a transfer function was proposed in the previous paper for analizing motion errors of hydrostatic tables. Validity of the proposed method was theoretically verified as the calculated motion errors were compared with the results by conventional multi pad method. In this paper, relationship between form error of rail and motion errors of hydrostatic table is analized theoretically in order to comprehand so-called 'averaging effect of oil film'. Experiments on the motion errors of hydrostatic table is conducted with 3 different rails, and the results are compared with the results calculated by Transfer Function Method. The results show good agreement. From the results, it is verified that TFM is very effective to analize the motion errors of hydrostatic table.

  • PDF

전달함수를 이용한 유정압테이블 운동정밀도 해석법의 제안 및 이론적 검증

  • 오윤진;박천홍;이후상;홍준희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.9-14
    • /
    • 2001
  • A new model utilizing a transfer function is introduced in the present paper for analizing motion errors of hydrostatic tables. Relationship between film reaction force in a single hydrostatic pad and form error of a guide rail is derived at various spacial frequencies by finite element analysis, and it is expressed as a transfer function. This transfer function clarifies so called averaging effect of the oil film quantitively. For example, it is found that the amplitide of the film reaction force is reduced as the spacial frequency increases or relative width of the pocket is reduced. Motion errors of a multiple pad table is estimated from transfer function, geometric relationship between each pads and form errors of a guide rail, which is named as Transfer Function Method. Calculated motion errors by TFM show good agreement with motion errors calculated by Multi Pad Method, which is considered entire table as an analysis object. From the results, it is confirmed that the proposed TFM is very effective to analyze the motion errors of hydrostatic tables.

  • PDF

Derivation of an Energy Function Based on Vector Product and Application to the Power System with Transfer Conductances and Capacitors (벡터 곱에 근거한 에너지함수 유도와 선로 컨덕턴스 및 커패시터를 포함한 전력시스템에의 적용 연구)

  • Moon Young-Hyun;Oh Yong-Taek;Lee Byung Ha
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.6
    • /
    • pp.274-283
    • /
    • 2005
  • This paper presents a new method to derive energy function based on vector product. Using this method, an energy function to consider transfer conductances and capacitors is derived. Then we recommend a voltage collapse criteria to predict the voltage collapse in power systems by using the energy margin derived by the proposed energy function. This energy function is applied to a 2-bus power system reflecting transfer conductances and capacitors. We show that the energy function derived based on vector product can be applied in order to analyze power system stability and the energy margin can be utilized as a criterion of voltage collapse by simulation for the 2-bus system.

Calculation of CBM, TRM and ATC using Quadratic Function Approximation (이차함수 근사화를 이용한 가용송전용량과 송전신뢰 및 설비편익 여유도 산정)

  • 이효상;신상헌;신동준;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.5
    • /
    • pp.296-301
    • /
    • 2004
  • The Available Transfer Capability (ATC) is defined as the measure of the transfer capability remaining in the physical transmission network for further commercial activity above already committed uses. Available Transfer Capability (ATC) calculation is a complicated task, which involves the determination I of total transfer capability (TTC), transmission reliability margin (TRM) and capability benefit margin (CBM). As the electrical power industry is restructured and the electrical power exchange is updated per hour, it is important to accurately and rapidly quantify the available transfer capability (ATC) of the transmission system. In ATC calculation,. the existing CPF method is accurate but it has long calculation time. On the contrary, the method using PTDF is fast but it has relatively a considerable error. This paper proposed QFA method, which can reduce calculation time comparing with CPF method and has few errors in ATC calculation. It proved that the method can calculate ATC more fast and accurately in case study using IEEE 24 bus RTS.

Road Noise Estimation Based on Transfer Path Analysis Using a Simplified Tire Vibration Transfer Model (단순화된 타이어 진동전달 모델의 전달경로분석법을 이용한 로드노이즈 예측기술 개발)

  • Shin, Taejin;Park, Jongho;Lee, Sangkwon;Shin, Gwangsoo;Hwang, Sungwook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.2
    • /
    • pp.176-184
    • /
    • 2013
  • Quantification of road noise is a challenging issue in the development of tire noise since its transfer paths are complicated. In this paper, a simplified model to estimate the road noise is developed. Transfer path of the model is from wheel to interior. The method uses the wheel excitation force estimated throughout inverse method. In inversion procedure, the Tikhonov regularization method is used to reduce the inversion error. To estimate the wheel excitation force, the vibration of knuckle is measured and transfer function between knuckle and wheel center is also measured. The wheel excitation force is estimated by using the measured knuckle vibration and the inversed transfer function. Finally interior noise due to wheel force is estimated by multiplying wheel excitation force in the vibro-acoustic transfer function. This vibro-acoustic transfer function is obtained throughout measurement. The proposed method is validated by using cleat excitation method. Finally, it is applied to the estimation of interior noise of the vehicle with different types of tires during driving test.