• 제목/요약/키워드: Transfer device

검색결과 1,124건 처리시간 0.026초

Efficient Organic White Light-Emitting Device Utilizing SAlq, A Novel Blue Light-Emitting Material

  • Lim, Jong-Tae;Ahn, Young-Joo;Kang, Gi-Wook;Lee, Nam-Heon;Lee, Mun-Jae;Kang, Hee-Young;Lee, Chang-Hee;Ko, Young-Wook;Lee, Jin-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.773-776
    • /
    • 2002
  • Efficient organic white light-emitting diodes are fabricated by doping [bis(2-methyl-8-quinolinolato) (tripheny-siloxy)aluminium (III)] (SAlq), a blue-emitting layer, with a red fluorescent dye of 4-dicyanomethylene-2-methyl-6-{2-(2,3,6,7-tetrahydro-1H,5H-benzo[i,j]quinolizin-8-yl)vinyl}-4H-pyran (DCM2). The incomplete energy transfer from blue-emitting SAlq to red-emitting DCM2 enables to obtain a balanced white light-emission. A device with the structure of ITO/TPD (50 nm)/SAlq:DCM2 (30 nm, 0.5 %)/$Alq_3$ (20 nm)/LiF (0.5 nm)/AI shows emission peaks at 456 nm and 482 nm from SAlq and at 570 nm from DCM2. The white light-emitting device shows an external quantum efficiency of about 2.3 %, a luminous efficiency of about 2.4 lm/W, and the CIE chromaticity coordinates of (0.32, 0.37) at 100 cd/m^2. A maximum luminance of about 23,800 cd/m^2. is obtained at 15 V and the current density of 782 mA/cm^2.

  • PDF

해군 함정 VRTU의 과열방지를 위한 열전소자 냉각장치의 적용에 따른 기관실 및 VRTU 내부 열 유동특성 분석 (An Analysis of the Thermal Flow Characteristics in Engine-Room and VTRU in accordance with Application of Thermoelectric Device Cooling System to Prevent Overheating of the Korean Navy Ship VRTU)

  • 정영인
    • 한국산학기술학회논문지
    • /
    • 제21권9호
    • /
    • pp.610-616
    • /
    • 2020
  • 본 연구에서는 대한민국 해군 함정의 하절기 운용 및 적도지병 파병 간 발생하고 있는 VRTU 과열로 인한 고온경보 발생과 장비정지 발생현상을 해결하기 위하여 해군 군수사령부 함정기술연구소와 공동연구를 수행하였다. 열전소자 냉각장치 설치에 따른 냉각효과를 확인하고, 전산 열 유동해석을 수행하여 VRTU 내부 열 유동특성을 분석하였다. 또 해석을 통해 기관실(디젤엔진룸) 내부의 온도분포를 살펴보고 VRTU 과열방지를 위한 최적의 설치위치를 알아보았다. 분석결과, 냉각장치를 설치함에 따라 VRTU 내부 평균 체적온도가 약 10 ℃ 감소하는 것을 확인하였으며 냉각장치에 설치된 Fan은 열 순환을 원활하게 하여 냉각효과를 높였다. 기관실 내부는 디젤엔진 상부에서 높은 온도분포를 나타냈고 통풍관 디퓨저 하부에서 가장 낮은 온도분포를 보였다. 열전소자 냉각장치는 높은 냉각성능을 나타내었으며, VRTU는 과열방지를 위하여 기관실의 통풍관 디퓨저 하부에 설치하는 것이 적절할 것으로 판단된다.

인공 경수를 이용한 미네랄 파울링 저감에 물리적 수처리 기기들의 효과에 관한 연구 (A Study of Efficacy of Physical Water Treatment Devices for Mineral Fouling Mitigation Using Artificial Hard Water)

  • 박복춘;김선도;백병준;이동환
    • 대한기계학회논문집B
    • /
    • 제29권11호
    • /
    • pp.1229-1238
    • /
    • 2005
  • The objective of the present study was to investigate the efficacy of physical water treatment (PWT) technologies using different catalytic materials and an electronic anti-fouling device in the mitigation of mineral fouling in a once-through flow system with mini-channel heat exchanger. Effects of flow velocity and water hardness on the effectiveness of PWT technologies were experimentally studied. The artificial water hardness varied from 5.0 to 10 mo1/m$^{3}$ as CaCO$_{3}$. For 10 mo1/m$^{3}$ solution, fouling resistance reduced by 13-40$\%$ depending on flow velocity and types of PWT devices. On the other hand, fouling resistance reduced by 21-29$\%$ depending on the PWT devices for 5 mo11m3 solutions. The PWT device using alloy of Cu and Zn as catalyst (CM2) was slightly more effective than the others. SEM photographs of scale produced from the 10 mol/m$^{3}$ solution at 1.0 m/s indicated that calcium carbonate scales without PWT devices were needle-shaped aragonite, which is sticky, dense and difficult to remove. Scales with the PWT devices showed a cluster of spherical or elliptic shape crystals. Both the heat transfer test results and SEM photographs strongly support the efficacy of PWT technologies using catalytic materials and an electronic anti-fouling device in the mitigation of mineral fouling.

Hafnium doping effect in a zinc oxide channel layer for improving the bias stability of oxide thin film transistors

  • Moon, Yeon-Keon;Kim, Woong-Sun;Lee, Sih;Kang, Byung-Woo;Kim, Kyung-Taek;Shin, Se-Young;Park, Jong-Wan
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.252-253
    • /
    • 2011
  • ZnO-based thin film transistors (TFTs) are of great interest for application in next generation flat panel displays. Most research has been based on amorphous indium-gallium-zinc-oxide (IGZO) TFTs, rather than single binary oxides, such as ZnO, due to the reproducibility, uniformity, and surface smoothness of the IGZO active channel layer. However, recently, intrinsic ZnO-TFTs have been investigated, and TFT- arrayss have been demonstrated as prototypes of flat-panel displays and electronic circuits. However, ZnO thin films have some significant problems for application as an active channel layer of TFTs; it was easy to change the electrical properties of the i-ZnO thin films under external conditions. The variable electrical properties lead to unstable TFTs device characteristics under bias stress and/or temperature. In order to obtain higher performance and more stable ZnO-based TFTs, HZO thin film was used as an active channel layer. It was expected that HZO-TFTs would have more stable electrical characteristics under gate bias stress conditions because the binding energy of Hf-O is greater than that of Zn-O. For deposition of HZO thin films, Hf would be substituted with Zn, and then Hf could be suppressed to generate oxygen vacancies. In this study, the fabrication of the oxide-based TFTs with HZO active channel layer was reported with excellent stability. Application of HZO thin films as an active channel layer improved the TFT device performance and bias stability, as compared to i-ZnO TFTs. The excellent negative bias temperature stress (NBTS) stability of the device was analyzed using the HZO and i-ZnO TFTs transfer curves acquired at a high temperature (473 K).

  • PDF

Study on Gesture and Voice-based Interaction in Perspective of a Presentation Support Tool

  • Ha, Sang-Ho;Park, So-Young;Hong, Hye-Soo;Kim, Nam-Hun
    • 대한인간공학회지
    • /
    • 제31권4호
    • /
    • pp.593-599
    • /
    • 2012
  • Objective: This study aims to implement a non-contact gesture-based interface for presentation purposes and to analyze the effect of the proposed interface as information transfer assisted device. Background: Recently, research on control device using gesture recognition or speech recognition is being conducted with rapid technological growth in UI/UX area and appearance of smart service products which requires a new human-machine interface. However, few quantitative researches on practical effects of the new interface type have been done relatively, while activities on system implementation are very popular. Method: The system presented in this study is implemented with KINECT$^{(R)}$ sensor offered by Microsoft Corporation. To investigate whether the proposed system is effective as a presentation support tool or not, we conduct experiments by giving several lectures to 40 participants in both a traditional lecture room(keyboard-based presentation control) and a non-contact gesture-based lecture room(KINECT-based presentation control), evaluating their interests and immersion based on contents of the lecture and lecturing methods, and analyzing their understanding about contents of the lecture. Result: We check that whether the gesture-based presentation system can play effective role as presentation supporting tools or not depending on the level of difficulty of contents using ANOVA. Conclusion: We check that a non-contact gesture-based interface is a meaningful tool as a sportive device when delivering easy and simple information. However, the effect can vary with the contents and the level of difficulty of information provided. Application: The results presented in this paper might help to design a new human-machine(computer) interface for communication support tools.

Efficient White Organic Light-emitting Device by utilizing a Blue-emitter Doped with a Red Fluorescent Dopant

  • Lim, Jong-Tae;Ahn, Young-Joo;Kang, Gi-Wook;Lee, Nam-Heon;Lee, Mun-Jae;Kang, Hee-Young;Lee, Chang-Hee;Ko, Young-Wook;Lee, Jin-Ho
    • Journal of Information Display
    • /
    • 제4권2호
    • /
    • pp.13-18
    • /
    • 2003
  • We synthesized bis (2-methyl-8-quinolinolato)(triphenylsiloxy) aluminum (III) (SAlq), a blue-emitting material having a high luminous efficiency, through a homogeneous-phase reaction. The photoluminescence (PL) and electroluminescence (EL) spectra of SAlq show two peaks at 454 nm and 477 nm. Efficient white light-emitting devices are fabricated by doping SAlq with a red fluorescent dye of 4-dicyanomethylene-2-methyl-6-{2-(2,3,6,7-tetrahydro-1H,5H-benzo[i,j]quinolizin-8yl) vinyl}-4H-pyran (DCM2). The incomplete energy transfer from blue-emitting SAlq to red-emitting DCM2 results in light-emission of both blue and orange colors. Devices with the structure of ITO/TPD (50 nm)/SAlq:DCM2 (30 nm, 0.5 %)/$Alq_3$ (20 nm)/LiF (0.5 nmj/Al show EL peaks at 456 nm and 482 nm originating from SAlq and at 570 nm from DCM2, resulting in the Commission Internationale d'Eclairage (CIE) chromaticity coordinates of (0.32, 0.37). The device exhibits an external quantum efficiency of about 2.3 % and a luminous efficiency of about 2.41m/W at 100 $cd/m^2$. A maximum luminance of about 23,800 $cd/m^2$ is obtained at the bias voltage of 15 V.

기존 운동기기 부착용 운동중량/횟수 자동측정기기의 성능평가 (Performance Evaluation of Automatic Exercise Weight and Repetition Measuring Device Add-on for Existing Fitness Machines)

  • 김정기;이용구
    • 대한기계학회논문집A
    • /
    • 제41권4호
    • /
    • pp.329-332
    • /
    • 2017
  • 본 연구는 기존 운동기기에 부착 가능한 새로운 운동중량, 횟수 자동측정기기의 개발을 위하여 센서모듈과 운동정보획득 알고리즘을 이용하여 운동의 양을 측정할 수 있는 시스템의 운동 계측성능 평가에 관한 것이다. 개발된 시스템은 기존 사용되고 있는 운동기기에 손쉽게 장착할 수 있도록 설계하였으며 측정된 데이터는 스마트폰에 블루투스로 전달 가능하도록 하였다. 실험결과 운동습관이 다른 3명의 사용자로부터 무게 및 횟수를 작은 오차로 검출할 수 있었다. 본 시스템은 사용자의 운동을 측정하여 운동데이터 활용이 가능한 각종 기기에 전달함으로써 개인 맞춤형 헬스케어 시스템 및 재활치료 시스템에도 적용이 가능하다는 장점을 가지고 있다.

서버 클라이언트 기반의 실시간 마이크로칩 형광 이미지 분석 시스템 개발 (Development of a real-time Analysis System of Microchip Fluorescence Images based on Server-Client)

  • 조미경;심재술
    • 한국정보통신학회논문지
    • /
    • 제17권5호
    • /
    • pp.1239-1244
    • /
    • 2013
  • 임상 의료 분야에서 질병 진단 및 치료를 위해서는 분자 수준(프로틴, DNA 등)의 크기 뿐만 아니라, 세포 수준에 대한 분석이 필요하다. 많은 경우 실험 샘플이 시간에 따라 변질되기 때문에 정확한 분석을 위해서는 빠른 분석과 실시간 데이터가 필요하다. 본 연구에서는 나노 마이크로 크기의 세포내 단백질이나 DNA의 변화 과정 등을 촬영할 수 있는 3차원 형광 관측 장치를 제작하고 이로부터 얻은 형광 이미지를 실시간 통합 관리 및 분석하기 위한 서버 클라이언트 기반의 형광 이미지 분석 시스템을 구축하였다. 시스템은 형광 관측 장치와 소프트웨어 그리고 형광 이미지를 실시간으로 분석할 수 있는 모바일 프로그램으로 구성된다. 개발된 시스템은 의료인이 시공간의 제약 없이 응급환자의 샘플에서 획득한 형광이미지를 실시간으로 전송받아 분석 및 진단을 내릴 수 있도록 해 주므로 유비쿼터스 헬스 구현에 활용할 수 있다.

A Study of Design of Hollow Fiber Membrane Modules for using in Artificial Lung by the PZT Actuator

  • Kim, Gi-Beum;Kim, Seong-Jong;Hong, Chul-Un;Lee, Yong-Chul;Kim, Min-Ho
    • 대한의용생체공학회:의공학회지
    • /
    • 제27권4호
    • /
    • pp.143-153
    • /
    • 2006
  • The purpose of this work was to assess and quantify the beneficial effects of gas exchange, while testingto the various frequencies of the sinusoidal wave that was excited by the PZT actuator, for patients suffering from acute respiratory distress syndrome (ARDS) or chronic respiratory problems. Also, this paper considered a simulator to design a hollow type artificial lung, and a mathematical model was used to predict a behavior of blood. This simulation was carried out according to the Montecarno's simulation method, anda fourth order Runge-Kutta method was used to solve the equation. The experimental design and procedure are then applied to the construction of a new device to assess the effectiveness of the membrane vibrations. As a result, the vibration method is very effective in the increase of gas transport. The gas exchange efficiency for the vibrating intravascular lung assist device can be increased by emphasizing the following design features: consistent and reproducible fiber geometry, and most importantly, an active means of enhancing convective mixing of water around the hollow fiber membranes. The experimental results showed the effective performance of the vibrating intravascular lung assist device. Also, we concluded that important design parameters were blood flow rates, fiber outer diameter and oxygen pressure drop. Based on the present results, it was believed that the optimal level of blood flow rates was 200$cm^3$/min.

Role of a PVA layer During lithography of SnS2 thin Films Grown by Atomic layer Deposition

  • Ham, Giyul;Shin, Seokyoon;Lee, Juhyun;Lee, Namgue;Jeon, Hyeongtag
    • 반도체디스플레이기술학회지
    • /
    • 제17권3호
    • /
    • pp.41-45
    • /
    • 2018
  • Two-dimensional (2D) materials have been studied extensively due to their excellent physical, chemical, and electrical properties. Among them, we report the material and device characteristics of tin disulfide ($SnS_2$). To apply $SnS_2$ as a channel layer in a transistor, $SnS_2$ channels were formed by a stripping method and a transfer method. The limitation of this method is that it is difficult to produce uniform device characteristics over a large area. Therefore, we directly deposited $SnS_2$ by atomic layer deposition (ALD) and then performed lithography. This method was able to produce devices with repeatable characteristics over a large area. However, the $SnS_2$ film was damaged by the acetone used as a photoresist (PR) developer during the lithography process, with the electrical properties of mobility of $2.6{\times}10^{-4}cm^2/Vs$, S.S. of 58.1 V/decade, and on/off current ratio of $1.8{\times}10^2$. These results are not suitable for advanced electronic devices. In this study, we analyzed the effect of acetone on $SnS_2$ and studied the device process to prevent such damage. Using polyvinyl alcohol (PVA) as a passivation layer during the lithography process, the electrical characteristics of the $SnS_2$ transistor had $2.11{\times}10^{-3}cm^2/Vs$ of mobility, 11.3 V/decade of S.S, and $2.5{\times}10^3$ of the on/off current ratio, which were 10x improvements to the $SnS_2$ transistor fabricated by the conventional method.