DOI QR코드

DOI QR Code

A Study of Design of Hollow Fiber Membrane Modules for using in Artificial Lung by the PZT Actuator

  • Kim, Gi-Beum (Research Institute of Clinical Medicine, Chonbuk National University Medical School) ;
  • Kim, Seong-Jong (Department of Bio & Applied Chemistry, Iksan National Collage) ;
  • Hong, Chul-Un (Research Center of Industrial Technology, Chonbuk National University) ;
  • Lee, Yong-Chul (Department of Internal Medicine, Airway Remodeling Laboratory, Chonbuk National University Medical Schools, and National Research Laboratory Program of the Korea Science and Engineering Foundation) ;
  • Kim, Min-Ho (Research Institute of Clinical Medicine, Chonbuk National University Medical School)
  • Published : 2006.08.01

Abstract

The purpose of this work was to assess and quantify the beneficial effects of gas exchange, while testingto the various frequencies of the sinusoidal wave that was excited by the PZT actuator, for patients suffering from acute respiratory distress syndrome (ARDS) or chronic respiratory problems. Also, this paper considered a simulator to design a hollow type artificial lung, and a mathematical model was used to predict a behavior of blood. This simulation was carried out according to the Montecarno's simulation method, anda fourth order Runge-Kutta method was used to solve the equation. The experimental design and procedure are then applied to the construction of a new device to assess the effectiveness of the membrane vibrations. As a result, the vibration method is very effective in the increase of gas transport. The gas exchange efficiency for the vibrating intravascular lung assist device can be increased by emphasizing the following design features: consistent and reproducible fiber geometry, and most importantly, an active means of enhancing convective mixing of water around the hollow fiber membranes. The experimental results showed the effective performance of the vibrating intravascular lung assist device. Also, we concluded that important design parameters were blood flow rates, fiber outer diameter and oxygen pressure drop. Based on the present results, it was believed that the optimal level of blood flow rates was 200$cm^3$/min.

Keywords

References

  1. W. J. Fedespiel, M. S. Hout, T. J. Hewitt, L. W. Lund, S. A. Heinrich, P. Litwak, F. R. Walters, G. D. Reeder, H. S. Borovetz, and B. G. Hattler, 'Development of a low flowresistance intravenous oxygenator,' ASAIO J., vol. 43, pp. M725-M730, 1997 https://doi.org/10.1097/00002480-199709000-00078
  2. S. E. Weinberger, Principles ofPulmonmy Medicine. Philadelphia: Saunders, 1992
  3. L. Gattinoni, A. Pesenti, and G. P. Rossi, 'Treatment of acute respiratory failure with low-frequency positive-pressure ventilation and extracorporeal removal of $CO_2$,' Lancet, vol. 2, pp. 292-294, 1980
  4. A. Pesenti, L. Gattinoni, T. Kobolow, and G. Damia, 'Extracorporeal circulation in adult respiratory failure, ' ASAIO Trans., vol. 34, pp. 43-47,1988
  5. M. T.Snider, D. B. Campbell, W. A. Kotke, K. M. High, G. B. Russell, M. F. Kearny, and D. R. Williams, 'Venovenous perfusion of adult and children with severe acute respiratory distress syndrome,' ASAIO Trans., vol. 34, pp. 1014-1020,1988
  6. T. G. Campell, 'Changing criteria for the artificial lung: Historic controls on the technology of ECMO,' ASAIO J., vol. 40, pp. 109-120,1994 https://doi.org/10.1097/00002480-199404000-00002
  7. S. Ichiba, and R. H. Bartlett, 'Current status of extracorporeal membrane oxygenation for severe respiratory failure', Artif. Organs, vol. 20, pp. 120-123, 1996 https://doi.org/10.1111/j.1525-1594.1996.tb00712.x
  8. T. J. Hewitt, B. G. Hattler and W. J. Federspiel, 'A mathematical model ofgas exchange in an intravenous membrane oxygenator,' Ann. Biomed. Eng., vol. 26, pp. 166-178, 1998 https://doi.org/10.1114/1.53
  9. J. D. Mortensen, 'Intravascular oxygenator: A new alternative method for augmenting blood gas transfer in patient with acute respiratory failure,' Artif. Organs, vol. 16, pp. 75-82, 1992 https://doi.org/10.1111/j.1525-1594.1992.tb00271.x
  10. S. A. Conrad, 'Major fmdings from the clinical trials of the intravascular oxygenator,' Arti. Organs, vol. 18, pp. 846-863, 1994 https://doi.org/10.1111/j.1525-1594.1994.tb03334.x
  11. M. A. Woodhead, 'Management of pneumonia,' Respir. Med., vol. 86, pp. 459-469, 1992 https://doi.org/10.1016/S0954-6111(96)80003-5
  12. T. T. Nguyen, J. B. Zwischenberger, W. Tao, D. I. Traber, D. N. Herndon, C. C. Duncan, B. Push, and A. Bidani, 'Significant enhancement of carbon dioxide removal by a new prototype IVOX,' ASAIO J., vol. 39, pp. M7l9-724, 1993
  13. S. N. Vaslef, L. F. Mockros, R. W. Anderson, and R. J. Leonard, 'Dse ofa mathematical model to predict oxygen transfer rates in hollow fiber membrane oxygenators,' ASAIO J., vol. 40, pp. 990-996, 1994 https://doi.org/10.1097/00002480-199440040-00016
  14. H. M. Weissman, and L. F. Mockros, 'Gas transfer to blood flowing in coiled circular tubes,' J. Eng. Mech. Div. ASCM, vol. 94, pp. 857-872, 1968
  15. K. Tanishita, P. D. Richardson, and P. M. Galletti, 'Tightly wound coils of microporous tubing: progress with secondary flow blood oxygenator design,' Trans. ASME, vol. 21, pp. 216-222,1975
  16. G. B. Kim, T. K. Kwon, G. R. Jheong, and S. C. Lee, 'Gas Transfer and Hemolysis Characteristic ofa New Type Intravenous Lung Assist Devices,' J. Biomed. Eng. Res., vol. 24, no. 2, pp. 121-126,2003
  17. G. B. Kim, T. K. Kwon, and C. U. Hung, 'Design of an Intravenous Oxygenator,' J. Artif. Organs, vol. 9, no. 1, pp. 34-41,2006 https://doi.org/10.1007/s10047-005-0312-1
  18. V. L. Streeter, E. B. Wylie, and K. Bedford, Fluid Mechanics (9th ed.), New York: McGrew-Hill Inc., 1998
  19. G. B. Kim, S. J. Kim, C. U. Hong, T. K. Kwon, and N. G. Kim, 'Enhancement of Oxygen Transfer in Hollow Fiber Membrane by the Vibration Method,' Korean J. Chem. Eng., vol. 22, no. 4, pp. 521-527,2005 https://doi.org/10.1007/BF02706636
  20. M. Mulder, Basic Principles of Membrane Technology, New York: Kluwer Academic Publishers, pp. 418-422,1996
  21. M. T. Snider, 'Clinical trails of an intravenous oxygenator in patients with adult respiratory distress syndrome,' Anesthesoilogy, vol. 77, pp. 855-863, 1972
  22. W. L. Beek, K. M. K. Muttzell, and J. W. van Heuven, Transport Phenomena (2th ed.), Singapore: John Wiley & Sons Inc., pp. 262-267, 1999
  23. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena (2th ed.), New York: John Wiley & Sons Inc., pp. 675-677,2002
  24. P. J. Morin, C. Gosselin, R. Picard, M. Vincent, R. Giundoin, and C. J. H. Nicholl, 'Implantable artificial lung,' J. Thorac. Cardivasc. Surg.,vol. 74, pp. 130-136, 1977
  25. K. Naito, K. Mizuguchi, and Y. Nose, 'The Need for Standardizing the Index of Hemolysis,' Artif. Organs, vol. 18, pp. 7-10, 1994 https://doi.org/10.1111/j.1525-1594.1994.tb03292.x
  26. Y. Nose, 'Recommendedpractice for assessment ofhemolysis in continuous flow blood pump west conshohoken,' P.A. American Society ofTesting and Materials, pp. 40-41,1998
  27. ISO/CD 199.2. Blood-gas Exchangers(Oxygenators) 1993. Document ISO/TC 150/SC2/WG/N 103