• Title/Summary/Keyword: Transfer Ratio

Search Result 2,118, Processing Time 0.029 seconds

Studies on the Metabolic Cooperativity between Ooccte and Cumulus Cells in Mammalian Oocyte Cumulus Complexes in vitro (포유동물 난자-난구 복합체의 Metabolic cooperativity)

  • 고선근;나철호;권혁방
    • The Korean Journal of Zoology
    • /
    • v.31 no.2
    • /
    • pp.81-86
    • /
    • 1988
  • The relationship between cumulus cell expansion, cocyte maturation and metabolic cooperativitiy was investigated by using mouse and pig cocyte-cumulus complexes in vitro. Cocyte germinal vesicle breakdown (GVBD) and cumulus expansion were manipulated with hormones or reagents which increase intracellular cAMP leveL Metabolic cooperativity between oocyte and cumulus cells was assessed by determination of the fraction of radiolabelled uridine marker that was transferred from the cumulus mass to the oocyte. Uptake of uddine marker by mouse and pig cumulus mass was increased by about fourfold of basal level with the stimulation of hormones (human choriononic gonadotrophin, HCG; follicle stimulating hormone, FSH) or cyclic AMP sttmulators (3-isobutyl-1-methylxanthine, IBMX; forskolin) during culture. However, the fraction of uridine that was transferred from the cumulus mass to the cocyte (transfer ratio) was gradually decreased during culture, irrespective with the presence of hormones or stimulators. The decrease of the transfer ratio was not correlated with the state of occyte whether they have GV or not, or with the degree of cumulus expansion. In mouse complexes, HCG induced more significant reducton of transfer ratio than other treatments. These results do not support the idea that modulations of metabolic cooperativity between cumulus cells and oocytes are important for the regulation of meiotic resumption in mammals.

  • PDF

The Pressure Drop and Heat Transfer Characteristics of a Direct Contact 4-Stage Fluidized Bed Heat Exchanger (직접 접촉식 4단 유동층 열교환기의 압력손실 및 열전달 특성)

  • 임동렬;박상일;전광민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.325-335
    • /
    • 1992
  • In this work, direct contact 4-stage fluidized bed heat exchanger is experimentally studied to develop a new type of heat exchanger which recovers the energy contained in the high temperature waste gas exhausted from the industrial furnaces. A sand is used as a heat transfer medium in this experiment. To determine the optimum operating condition, 11 different perforated plates which have a different free area ratio with different hole diameter are used in the experiment. From the room temperature experiment, the pressure drop which is caused by fluidized bed formation is observed. The high temperature experiment is carried out to seek the optimum operating condition of high heat efficiency at low heat exchanger operation cost. The results of experiment are as following. The pressure drop in the high temperature condition can be predicted from the results of the room temperature experiment. And Nusselt number becomes smaller due to the increased interference between sand particles as Reynolds number increases when the dilute phase fluidized beds are formed in nigh temperature condition. But heat transfer amount through the total sand surface area become larger due to the large resident amount of sand. Considering the heat transfer amount and the heat exchanger operation cost, perforated plates which have either a 30% or 35% of free area ratio with 15mm of hole diameter are best fitted for our goal of this work. The values of .phi. which is a dimensionless number representing the absorption heat amount per unit sand rate are in the range from 0.4 to 0.5, when Reynolds number of waste gas ranges from 25-30 with these perforated plates.

The Effect of Oxygen Transfer Rate on the Nebramycin Factor 5' Activity and Component Ratio in Streptoalloteichus hindustanus Fermentation. (Streptoalloteichus hindustanus 발효시 Nebramycin Factor 5' 역가 및 구성비율에 대한 산소전달속도의 영향)

  • 김정근;이병규;노용택
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.4
    • /
    • pp.395-399
    • /
    • 2003
  • Nebramycin is a complex of aminocyclitol compounds that is produced by aerobic culture in fermentation process. The major antibiotic factors produced by Streptoalloteichus hindustanus are nebramycin factor 2, 4, 5'and kanamycin A. A mutant was selected, producing nebramycin factor 5' activity 16.4 times higher than parent strain by microbiological assay using Pseudomonas aeruginosa CH-U34AF. The component ratio of nebramycin factor 5' was dramatically increased from 34% to 70% by the optimization of fermentation condition. It was found that the component ratio of nebramycin factor 5' in fermentation was especially affected by the oxygen transfer rate. Optimum oxygen transfer rate for maximal nebramycin factor 5' productivity and ratio during S. hindustanus fermentation was elucidated to $0.50 mMO_2$/min.

Static Aanlysis of Curved box Girder Bridge with Variable Cross Section by Transfer Matrix Method (전달행렬법에 의한 변단면 곡선 상자형 거더교의 정적해석)

  • Kim, Yong-Hee;Lee, Yoon-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.109-120
    • /
    • 2003
  • The state-of-art of curved box girder bridge with cross section design has advanced in various area. In these days, several analytical techniques for behaviors of curved box girder bridges cross section are available to engineers. The transfer matrix method is extensively used for the structural analysis because its merit in the theoretical background and applicability. The technique is attractive for implementation on a numerical solution by means of a computer program coded in Fortran language with a few elements. To demonstrate this fact, it gives good results which compare well with finite element method. Therefore, this paper proposed the static analysis method of curved box bridge with cross section by transfer matrix method based on pure-torsional theory and the optimal span ratio/variable cross section ratio of 3 span continuous curved box girder bridge.

Model Tests on a Plastic Pipe Pile for the Analysis of Noise, Energy Transfer Effect and Bearing Capacity due to Hammer Cushion Materials (해머 쿠션 재질에 따른 모형말뚝의 소음, 에너지 전달효율 및 지지력 분석)

  • Lim, Yu-Jin;Hwang, Kwang-Ho;Park, Young-Ho;Lee, Jin-Gul
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.33-43
    • /
    • 2006
  • Driving tests using model plastic piles with different hammer cushion materials were performed in order to evaluate the efficiency of energy transfer ratio from the hammer, degree of vibration of the surrounding ground and noise due to impacting. A small pile driving analyzer (PDA) was composed using straingages and Hopkinson bar which is measuring force signal and pile-head velocity. The hammer cushion (cap block) materials used for the model driving tests were commercial Micarta, plywood, polyurethane, rubber (SBR) and silicone rubber. The highest energy transfer ratio was obtained from Micarta in the same soil and driving conditions. Micarta was followed by polyurethane, plywood, rubber and silicone in descending order. The more efficient energy transfdr ratio of the hammer cushion materials became, the bigger average noisy (sound) level was found. In addition, Micarta and polyurethane provided bigger bearing capacities than other materials compared in the same soil and driving conditions in which the static loading tests were performed at the end of driving.

Characteristics of Heat Transfer in Three-Phase Swirling Fluidized Beds (삼상 Swirling 유동층에서 열전달 특성)

  • Son, Sung-Mo;Shin, Ik-Sang;Kang, Yong;Cho, Yong-Jun;Yang, Hee-Chun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.56-62
    • /
    • 2008
  • Characteristics of heat transfer were investigated in a three-phase swirling fluidized bed whose diameter was 0.102 m and 2.5 m in height. Effects of gas and liquid velocities, particle size and liquid swirling ratio ($R_S$) on the immersed heater-to-bed overall heat transfer coefficient were examined. The heat transfer characteristics between the immersed heater and the bed was well analyzed by means of phase space portraits and Kolmogorov entropy(K) of the time series of temperature difference fluctuations. The phase space portraits of temperature difference fluctuations became stable and periodic and the value of Kolmogorov entropy tended to decrease with increasing the value of liquid swirling ratio from 0.1 to 0.4. The value of Kolmogorov entropy exhibited its minimum with increasing liquid swirling ratio. The value of overall heat transfer coefficient (h) showed its maximum with the variation of liquid velocity, bed porosity or liquid swirling ratio, but it increased with increasing gas velocity and particle size. The value of K exhibited its maximum at the liquid velocity at which the h value attained its maximum. The overall heat transfer coefficient and Kolmogorov entropy were well correlated in terms of dimensionless groups and operating variables.

Effect of Free-Stream Turbulence on Film-Cooling Upstream of Injection Hole on a Cylindrical Surface (자유유동 난류강도가 원형 곡면위의 분사홀 상류에서의 막냉각에 미치는 영향에 대한 연구)

  • Seo, Hyeong-Joon;Kuk, Keon;Lee, Joon-Sik;Lee, Sang-Woo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.645-652
    • /
    • 1994
  • The leading edge of a turbine blade was simulated as a circular cylindrical surface. The effect of free-stream turbulence on the mass transfer upstream of the injectionhole has been investigated experimentally. The effects of injection location, blowing ratio on the Sherwood number distribution were examined as well. The mass transfer coefficients were measured by a naphthalene sublimation technique. The free-stream Reynolds number based on the cylinder diameter is 53,000. Other conditions investigated are: free-stream turbulence intensities of 3.9% and 8.0%, injection locations of $40^{\circ}$, $50^{\circ}$, and $60^{\circ}$ from the front stagnation point of the cylinder, and blowing ratios of 0.5 and 1.0. The role of the horseshoe vortex formed upstream edge of the injected jet is dicussed in detail. When the blowing ratio is unity, and the coolant jet is injected at $40^{\circ}$, the mass transfer upstream of the jet is not affected by the coolant jet at all. On the other hand, when the injection hole is located beyond $50^{\circ}$, the mass transfer upstream edge of the injection hole suddenly increases due to the formation of the horseshoe vortex, but it dereases as the free-stream turbulence intensity increases because the strength of the horseshoe vortex structure becomes weakened. The role of the horseshoe vortex is clearly evidenced by placing a rigid rod at the injection hole instead of issuing the jet. In the case of the rigid rod, the spanwise Sherwood number upstream of the injection hole is much larger due to the intense influence of the horseshoe vortex.

A Study on Torsional Stress ratio and Torsional ratio of Curved Girder Bridge by Transfer Matrix Method (전달행렬법에 의한 곡선거더교의 비틀림 응력비와 비틀림 정수비에 관한 연구)

  • Lee, Wong-Hong;Lee, Yoon-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.173-182
    • /
    • 2006
  • In the design of curved girder bridges, the engineer is faced with a complex stress situatiorl. since these types of mutiple-I girder. mono-box girder and twin-box girder are subjected to both bending and torsional force. In general, the torsional forces consist of two part, St. venant's and warping. Thus the procedure for determining the induced stresses in a curved girder is difficult. The transfer matrix method is extensively used for the structural analysis because its merit in the theoretical background and applicability. The technique is attractive for implementation on a numerical solution by means of a computer program coded in Fortran language with a few elements. To demonstrate this fact. it gives good results which compare well with finite difference method. Therefore, in this paper, to clarify the range where the torsional warping stress can be approximated by pure torsional analyzed a critical value of relationships between the torsional stress ratio and torsional ratio.

A Study on Correlation Between Acoustic Pressure and Heat Transfer Augmentation via Ultrasonic Vibration (초음파 진동 가진시 발생하는 압력과 열전달 촉진과의 상관관계에 관한 연구)

  • Oh Yool-Kwon;Yang Ho-Dong
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.22-25
    • /
    • 2004
  • The present paper investigated the correlation between acoustic pressure and heat transfer augmentation in acoustic fields. The acoustic pressure predicted by numerical work and compared with the augmentation ratio of heat transfer coefficient was experimentally measured. Also, particle image velocimetry(PIV) was used for the visualization of velocity vectors and kinetic energy distribution inside liquid region. For the numerical work, SVS programed with Fortran language and based on a coupled FE-BEM was used. Results of the present study, the acoustic pressure is increased by $60\%$ and the largest augmentation of heat transfer about $28\%$ was measured. Finally, the profiles of acoustic pressure is consistent with that of augmentation of heat transfer. It is concluded that a correlation exists between the acoustic pressure and the heat transfer augmentation.

  • PDF

Numerical Analysis on the Condensation Heat Transfer and Pressure Drop Characteristics of the Horizontal Tubes of Modular Shell and Tube-Bundle Heat Exchanger (모듈형 쉘-관군 열교환기에서의 응축열전달 및 압력강하 특성에 관한 수치해석)

  • Ko, Seung-Hwan;Park, Hyung-Gyu;Park, Byung-Kyu;Kim, Charn-Jung
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.191-198
    • /
    • 2001
  • A numerical analysis of the heat and mass transfer and pressure drop characteristics in modular shell and tube bundle heat exchanger was carried out. Finite Concept Method based on FVM and $k-\varepsilon$ turbulent model were used for this analysis. Condensation heat transfer enhanced total heat transfer rate $4\sim8%$ higher than that of dry heat exchanger. With increasing humid air inlet velocity, temperature and relative humidity, and with decreasing heat exchanger aspect ratio and cooling water velocity, total heat and mass transfer rate could be increased. Cooling water inlet velocity had little effect on total heat transfer.

  • PDF