• Title/Summary/Keyword: Transfer Matrix method

Search Result 543, Processing Time 0.026 seconds

Efficient 3D Analysis of Building Structures with A Rigid Floor System (주상복합구조물의 효율적인 3차원 해석)

  • 황현식;이동근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.239-246
    • /
    • 1996
  • Very stiff floor system in a residential-commercial building causes some problems in the numerical analysis procedure due to significant difference in stiffness with adjacent structural elements. Static analysis of structure with a stiff transfer-floor can be peformed approximately in two steps for upper and lower pons for the structure. However, it is impossible to perform dynamic analysis in two steps with separate models. An efficient method for dynamic analysis of a structure with a rigid floor system is proposed in this study. The matrix condensation technique is employed to reduce the degree of freedom for upper and lower parts of the structure and a beam elements with rigid bodies of both ends are introduce to model the rigid floor system. Efficiency end accuracy of the proposed method ore verified through analysis of several example structures.

  • PDF

Identification of beam crack using the dynamic response of a moving spring-mass unit

  • An, Ning;Xia, He;Zhan, Jiawang
    • Interaction and multiscale mechanics
    • /
    • v.3 no.4
    • /
    • pp.321-331
    • /
    • 2010
  • A new technique is proposed for bridge structural damage detection based on spatial wavelet analysis of the time history obtained from vehicle body moving over the bridge, which is different from traditional detection techniques based on the bridge response. A simply-supported Bernoulli-Euler beam subjected to a moving spring-mass unit is established, with the crack in the beam simulated by modeling the cracked section as a rotational spring connecting two undamaged beam segments, and the equations of motion for the system is derived. By using the transfer matrix method, the natural frequencies and mode shapes of the cracked beam are determined. The responses of the beam and the moving spring-mass unit are obtained by modal decomposition theory. The continuous wavelet transform is calculated on the displacement time histories of the sprung-mass. The case study result shows that the damage location can be accurately determined and the method is effective.

Prediction of Resonance Frequency rind Mode Shape of Rotor in Switched Reluctance Motor

  • Ha, Kyung-Ho;Jeong, Seung-Kyu;Hong, Jung-Pyo;Kang, Do-Hyun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.12B no.1
    • /
    • pp.19-23
    • /
    • 2002
  • This paper investigates the influence of various stator pole shapes and yoke structures in Switched Reluctance Motors (SRM) on the mechanical behavior caused by the electromagnetic farce. The stator part in SRM produces most vibration. The geometric design of the stator is therefore necessary to reduce the vibration. Based on electromagnetic and structural Finite Element Method (FEM), the free and farced vibrations for the various structures of SRM with 6/4 poles are analyzed. Then a less vibration stator structure is proposed. Some of numerical computations for a prototype motor are verified by experimental results.

An investigation on the vibrations of laminated shells under aeroacoustic loads using a WFE approach

  • Errico, Fabrizio;Franco, F.;Ichchou, M.;De Rosa, S.;Petrone, G.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.6
    • /
    • pp.463-478
    • /
    • 2019
  • The present work investigates the effect on the flow-induced vibrations of the lay-up sequence of composite laminated axisymmetric structures, using an hybrid approach based on a wave finite element and a transfer matrix method. The structural vibrations, under deterministic distributed pressure loads, diffuse acoustic field and turbulent boundary layer excitations, are analysed and compared. A multi-scale approach is used for the dynamic analysis of finite structures, using an elementary periodic subsystem. Different flow regimes and shell curvatures are analysed and the computational efficiency is also discussed.

Improvement of the surface roughness by changing chamfered angle in the face milling (정면밀리가공에서 챔퍼각 변화에 의한 표면조도 향상)

  • 이성세
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.641-646
    • /
    • 2000
  • A milling process with 45 degree chamfered inserts produces a perfect flat surface only in theory. It is due to many unwanted factors including thermal effect, dynamic effect, the problem of the controller used and the problem of accuracy of the machine tool. In this study, introduced is a method to improve the surface roughness by redesigning of the chamfer angle of the insert, which traditionally has been 45 degree. First, the relationship between the fixed machine coordinate and the relative coordinate on the insert is derived. This transfer matrix is used to determine the new insert angle to maximize the flatness of the machined surface. A newly designed insert is manufactured, and used to carry out the experiment. It is proved that the insert designed by the proposed method produced a much flatter surface than a traditional one.

  • PDF

A Study on Identification of Open Area of Pump for Hydraulic Excavator (유압 굴삭기용 펌프의 개구면적 규명에 관한 연구)

  • Lim T.H.;Oh B.S.;Lee H.S.;Yang S.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.101-102
    • /
    • 2006
  • The purpose of this paper is pulsation-analysis of the swash plate type axial piston pump for excavator and the method of side branch hose application, which is used normally in construction equipments. In this paper, draw the mathematical modeling for pressure pulsation mechanism of the swash plate type axial piston pump for excavator, expression the flow pulsation in the pipelines by transfer matrix method, programmed simulation for pulsation by AMEsim software, and the reliability of that was verified by the comparison with the experimental results.

  • PDF

An Optimum Design of a Rotor-Bearing Spindle System for a Ultra Centrifuge (초고속 원심분리 회전축계의 최적설계)

  • 김종립;윤기찬;박종권
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.145-152
    • /
    • 1998
  • This paper presents an optimum design of a rotor-bearing spindle system for a ultra centrifuge (80,000 RPM) supported by ball bearings with nonlinear stiffness characteristics. To obtain the nonlinear bearing stiffnesses, a ball bearing is modeled in five degrees of freedom and is analyzed quasi-statically. The dynamic behaviors of the nonlinear rotor-bearing system are analyzed by using a transfer-matrix method iteratively. For optimization. we use the cost function that simultaneously minimizes the weight of a rotor and maximizes the separation margins to yield the critical speeds as far from the operating speed as possible. Augmented Lagrange Multiplier (ALM) method is employed for the nonlinear optimization problem. The result shows that the rotor-bearing spindle system is optimized to obtain 9.5% weight reduction and 21% separation margin.

  • PDF

Analysis and Improvement for Performance of the Muffler of a Tracter (트랙터 소음기의 성능해석 및 개선에 관한 연구)

  • 이규태;도중석;오재응
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.151-159
    • /
    • 1998
  • The heavy equipment such as tracter has been studied to improve rather the performance of engine than comfort. The mufflers of tracters have various specifications according to their uses. The exact analysis of various mufflers is needed to reduce the level of exhaust moise, a major noise source of engine, to improve the ride quality of tracter. In this study, a software based on Green's function is developed to predict the performance of sound transmission loss for a muffler according to the locations of inlet/outlet pipes. The locations of inlet and outlet pipes can be fixed at different position individually. The conventional muffler has the locations of inlet/outlet pipes on the direction of longitudinal axes. On other hand, the inlet and outlet pipes may be located at the circumferential surface of a test muffler such as one of tracter. The software is verified by analysis and experiment on current muffler of tracter and the improvement technique is proposed to reduce the level of exhaust noise.

  • PDF

Control and Design of 50,000rpm Class Active Magnetic Bearing System for High Speed-Small Size Precision Motor (50,000rpm급 초고속 소형 정밀모터용 능동 자기베어링 시스템 제어 및 설계)

  • Kang Gyu-Hong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.8
    • /
    • pp.408-415
    • /
    • 2006
  • This paper deal with control and design of 50,000rpm class Active Magnetic Bearing(AMB) system for high speed precision motor. In the design of AMB system, the design parameters adopted high robust rotor shaft, Active Magnetic Bearing, sensor and control system. In the design of Magnetic Bearing, 2-D Finite Element Method(FEM) is used and transfer matrix method is using for rotor dynamics. The control accuracy of high speed AMB system is demonstrated by experimentations.

Optimal sequencing of 1D acoustic system for sound transmission loss maximization using topology optimization method (전달손실 최대화를 위한 위상최적화기반 1차원 흡차음시스템의 최적 배열 설계)

  • Kim, Eun-Il;Lee, Joong-Seok;Kim, Yoon-Young;Kim, Jung-Soo;Kang, Yeon-June
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.309-314
    • /
    • 2007
  • Optimal layer sequencing of a multi-layered acoustical foam is solved to maximize its sound transmission loss. A foam consisting of air and poroelastic layers can be optimized when a limited amount of a poroelastic material is allowed. By formulating the sound transmission loss maximization problem as a one dimensional topology optimization problem, optimal layer sequencing and thickness were systematically found for several frequencies. For optimization, the transmission losses of air and poroelastic layers were calculated by the transfer matrix derived from Biot's theory. By interpolating five intrinsic parameters among several poroelastic material parameters, dear air-poroelastic layer distributions were obtained; no filtering or post-processing was necessary. The optimized foam layouts by the proposed method were shown to differ depending on the frequency of interest.

  • PDF